On scalar metrics that maximize geodesic distances in the plane

被引:1
|
作者
Conti, Sergio [1 ]
Schweizer, Ben [2 ]
机构
[1] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
[2] Tech Univ Dortmund, Fak Math, D-44227 Dortmund, Germany
关键词
GAMMA-CONVERGENCE; ENERGY; LIMIT;
D O I
10.1007/s00526-010-0357-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Riemannian metric a in the plane together with a point A subset of R-2 induces a distance function d(a)(A, .). We investigate the optimization problem searching a scalar metric a which maximizes the distance between A and a given set B. We find necessary conditions for optimal metrics which help to determine solutions a. In the case that the set B is a single point, we determine the optimal metric explicitly.
引用
收藏
页码:151 / 177
页数:27
相关论文
共 50 条
  • [21] Geodesic equivalence of metrics as a particular case of integrability of geodesic flows
    V. S. Matveev
    P. J. Topalov
    Theoretical and Mathematical Physics, 2000, 123 : 651 - 658
  • [22] Geodesic equivalence of metrics as a particular case of integrability of geodesic flows
    Matveev, VS
    Topalov, PJ
    THEORETICAL AND MATHEMATICAL PHYSICS, 2000, 123 (02) : 651 - 658
  • [23] The Scalar Curvature on Totally Geodesic Fiberings
    W. Kramer
    Annals of Global Analysis and Geometry, 2000, 18 : 589 - 600
  • [24] The scalar curvature on totally geodesic fiberings
    Kramer, W
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2000, 18 (06) : 589 - 600
  • [25] A REMARK ON VANISHING GEODESIC DISTANCES IN INFINITE DIMENSIONS
    Magnani, Valentino
    Tiberio, Daniele
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (08) : 3653 - 3656
  • [26] Integrable geodesic flows of nonholonomic metrics
    Taimanov I.A.
    Journal of Dynamical and Control Systems, 1997, 3 (1) : 129 - 147
  • [27] Estimating geodesic distances on locally linear patches
    Meng, Deyu
    Xu, Zongben
    Gu, Nannan
    Dai, Mingwei
    2007 IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY, VOLS 1-3, 2007, : 67 - 70
  • [28] Geodesic equivalence of metrics on surfaces and integrability
    Matveev, VS
    Topalov, PJ
    DOKLADY AKADEMII NAUK, 1999, 367 (06) : 736 - 738
  • [29] FAST COMPUTATION OF ALL PAIRS OF GEODESIC DISTANCES
    Noyel, Guillaume
    Angulo, Jesus
    Jeulin, Dominique
    IMAGE ANALYSIS & STEREOLOGY, 2011, 30 (02): : 101 - 109
  • [30] Density peaks clustering using geodesic distances
    Mingjing Du
    Shifei Ding
    Xiao Xu
    Yu Xue
    International Journal of Machine Learning and Cybernetics, 2018, 9 : 1335 - 1349