On scalar metrics that maximize geodesic distances in the plane

被引:1
|
作者
Conti, Sergio [1 ]
Schweizer, Ben [2 ]
机构
[1] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
[2] Tech Univ Dortmund, Fak Math, D-44227 Dortmund, Germany
关键词
GAMMA-CONVERGENCE; ENERGY; LIMIT;
D O I
10.1007/s00526-010-0357-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Riemannian metric a in the plane together with a point A subset of R-2 induces a distance function d(a)(A, .). We investigate the optimization problem searching a scalar metric a which maximizes the distance between A and a given set B. We find necessary conditions for optimal metrics which help to determine solutions a. In the case that the set B is a single point, we determine the optimal metric explicitly.
引用
收藏
页码:151 / 177
页数:27
相关论文
共 50 条