Mechanisms of electrochemical nitrogen gas reduction to ammonia under ambient conditions: a focused review

被引:16
|
作者
Kaiprathu, Anjali [1 ]
Velayudham, Parthiban [1 ]
Teller, Hanan [1 ]
Schechter, Alex [1 ,2 ]
机构
[1] Ariel Univ, Dept Chem Sci, IL-40700 Ariel, Israel
[2] West Bohemia Univ, Dev Ctr Renewable Energy, New Technol Ctr, West Bohemia, Pilsen, Czech Republic
关键词
Energy conversion; Bifunctional catalysts; Nitrogen reduction reaction; Electrocatalyst; VAN KREVELEN MECHANISM; ATMOSPHERIC-PRESSURE; HIGH SELECTIVITY; LOW-TEMPERATURE; N-2; REDUCTION; HABER-BOSCH; CATALYSTS; ELECTROCATALYSTS; FIXATION; NH3;
D O I
10.1007/s10008-022-05228-5
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Electrocatalytic nitrogen reduction reaction (E-NRR) to ammonia is becoming a major topic of interest in the field of large-scale energy storage from renewable sources and water. This approach is considered as an alternative route of ammonia production that could replace the high energy demanding and polluting Haber-Bosch process or high pressure stored hydrogen from electrolysis. This focused review covers different recent aspects of ammonia production via E-NRR electrocatalysis, including the challenges of E-NRR, reaction mechanisms, different materials of E-NRR catalysts such as noble metal-based, non-noble transition metal-based oxides, nitrides, carbides, and hetero-atom-based catalysts, emphasizing bifunctional catalysts reacting at ambient pressures and temperatures, which were not included in previous reviews. In addition, we discuss important issues concerning the commonly used experimental setup, testing protocols, and various NH3 quantification methods. The various fundamental and applied research methodologies summarized in this review can serve to promote efficient research on electrocatalytic nitrogen reduction and ammonia production, making it a promising future energy storage as a synthetic alternative fuel.
引用
收藏
页码:1897 / 1917
页数:21
相关论文
共 50 条
  • [1] Mechanisms of electrochemical nitrogen gas reduction to ammonia under ambient conditions: a focused review
    Anjali Kaiprathu
    Parthiban Velayudham
    Hanan Teller
    Alex Schechter
    Journal of Solid State Electrochemistry, 2022, 26 : 1897 - 1917
  • [2] Electrochemical Nitrogen Reduction to Ammonia Under Ambient Conditions: Stakes and Challenges
    Biswas, Suchi Smita
    Chakraborty, Soumita
    Saha, Arunava
    Eswaramoorthy, Muthusamy
    CHEMICAL RECORD, 2022, 22 (11):
  • [3] Recent Advances in Electrochemical Synthesis of Ammonia through Nitrogen Reduction under Ambient Conditions
    Wang, Jia
    Chen, Silong
    Li, Zijian
    Li, Guangkai
    Liu, Xien
    CHEMELECTROCHEM, 2020, 7 (05): : 1067 - 1079
  • [4] Ammonia Synthesis via Electrochemical Nitrogen Reduction Reaction on Iron Molybdate under Ambient Conditions
    Chen, Cong
    Liu, Yang
    Yao, Yuan
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2020, 2020 (34) : 3236 - 3241
  • [5] Effect on electrochemical reduction of nitrogen to ammonia under ambient conditions: Challenges and opportunities for chemical fuels
    Niu, Lijuan
    An, Li
    Wang, Xiayan
    Sun, Zaicheng
    JOURNAL OF ENERGY CHEMISTRY, 2021, 61 : 304 - 318
  • [6] Effect on electrochemical reduction of nitrogen to ammonia under ambient conditions: Challenges and opportunities for chemical fuels
    Niu L.
    An L.
    Wang X.
    Sun Z.
    Journal of Energy Chemistry, 2021, 61 : 304 - 318
  • [7] Current Progress of Electrocatalysts for Ammonia Synthesis Through Electrochemical Nitrogen Reduction Under Ambient Conditions
    Liu, Anmin
    Yang, Yanan
    Ren, Xuefeng
    Zhao, Qidong
    Gao, Mengfan
    Guan, Weixin
    Meng, Fanning
    Gao, Liguo
    Yang, Qiyue
    Liang, Xingyou
    Ma, Tingli
    CHEMSUSCHEM, 2020, 13 (15) : 3766 - 3788
  • [8] Effect on electrochemical reduction of nitrogen to ammonia under ambient conditions: Challenges and opportunities for chemical fuels
    Lijuan Niu
    Li An
    Xiayan Wang
    Zaicheng Sun
    Journal of Energy Chemistry, 2021, 61 (10) : 304 - 318
  • [9] Nanomaterials for the electrochemical nitrogen reduction reaction under ambient conditions
    Wen, Juan
    Zuo, Linqing
    Sun, Haodong
    Wu, Xiongwei
    Huang, Ting
    Liu, Zaichun
    Wang, Jing
    Liu, Lili
    Wu, Yuping
    Liu, Xiang
    van Ree, Teunis
    NANOSCALE ADVANCES, 2021, 3 (19): : 5525 - 5541
  • [10] A Review of Electrocatalytic Reduction of Dinitrogen to Ammonia under Ambient Conditions
    Cui, Xiaoyang
    Tang, Cheng
    Zhang, Qiang
    ADVANCED ENERGY MATERIALS, 2018, 8 (22)