New Improvement of the Domain of Parameters for Newton's Method

被引:4
|
作者
Amoros, Cristina [1 ]
Argyros, Ioannis K. [2 ]
Gonzalez, Daniel [3 ]
Magrenan, Angel Alberto [4 ]
Regmi, Samundra [2 ]
Sarria, Inigo [1 ]
机构
[1] UNIR, Escuela Super Ingn & Tecnol, Logrono 26006, Spain
[2] Cameron Univ, Dept Math Sci, Lawton, OK 73505 USA
[3] Univ Amer, Escuela Ciencias Fis & Matemat, Quito 170517, Ecuador
[4] Univ La Rioja, Dept Matemat & Comp, Logrono 26004, Spain
关键词
domain; Newton's method; improvement; REAL DYNAMICS; CONVERGENCE; FAMILY;
D O I
10.3390/math8010103
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
There is a need to extend the convergence domain of iterative methods for computing a locally unique solution of Banach space valued operator equations. This is because the domain is small in general, limiting the applicability of the methods. The new idea involves the construction of a tighter set than the ones used before also containing the iterates leading to at least as tight Lipschitz parameters and consequently a finer local as well as a semi-local convergence analysis. We used Newton's method to demonstrate our technique. However, our technique can be used to extend the applicability of other methods too in an analogous manner. In particular, the new information related to the location of the solution improves the one in previous studies. This work also includes numerical examples that validate the proven results.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Continuous Newton's Method
    Neuberger, J. W.
    SOBOLEV GRADIENTS AND DIFFERENTIAL EQUATIONS, SECOND EDITION, 2010, 1670 : 79 - 83
  • [42] Newton and Gauss-Newton method in the estimation of nonlinear regression model parameters
    Silva, Edilson M.
    Fruhauf, Ariana C.
    Fernandes, Felipe A.
    Paula, Gustavo S.
    Muniz, Joel A.
    Fernandes, Tales J.
    SIGMAE, 2019, 8 (02): : 728 - 734
  • [43] Time-Domain Finite Element Modeling of Nonlinear Conductivity Using Newton's Method
    Yan, Su
    Jin, Jian-Ming
    2015 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION & USNC/URSI NATIONAL RADIO SCIENCE MEETING, 2015, : 1822 - 1823
  • [44] KEPLER'S EQUATION AND NEWTON'S METHOD
    Colwell, Peter
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1991, 52 (02): : 203 - 204
  • [45] New time domain method for identification of modal parameters and its application
    Tang, Weixiao
    Liang, Zhiqiang
    Zhen, Xiaozhong
    Zhendong Ceshi Yu Zhenduan/Journal of Vibration, Measurement & Diagnosis, 1998, 18 (03): : 190 - 196
  • [46] On the radius convergence of Newton's method
    Argyros, IK
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2001, 77 (03) : 389 - 400
  • [47] CONVERGENCE OF THE RELAXED NEWTON'S METHOD
    Argyros, Ioannis Konstantinos
    Manuel Gutierrez, Jose
    Alberto Magrenan, Angel
    Romero, Natalia
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (01) : 137 - 162
  • [48] On a Convex Acceleration of Newton's Method
    J. A. Ezquerro
    M. A. Hernández
    Journal of Optimization Theory and Applications, 1999, 100 : 311 - 326
  • [49] Typical dynamics of Newton?s method
    Steele, T. H.
    TOPOLOGY AND ITS APPLICATIONS, 2022, 318
  • [50] On the convergence of open Newton's method
    Kunnarath, Ajil
    George, Santhosh
    Sadananda, Ramya
    Padikkal, Jidesh
    Argyros, Ioannis K.
    JOURNAL OF ANALYSIS, 2023, 31 (04): : 2473 - 2500