A UNIFIED IMEX RUNGE-KUTTA APPROACH FOR HYPERBOLIC SYSTEMS WITH MULTISCALE RELAXATION

被引:38
|
作者
Boscarino, Sebastiano [1 ]
Pareschi, Lorenzo [2 ]
Russo, Giovanni [1 ]
机构
[1] Univ Catania, Dept Math & Comp Sci, Catania, Italy
[2] Univ Ferrara, Dept Math & Comp Sci, Ferrara, Italy
关键词
IMEX Runge-Kutta methods; hyperbolic conservation laws with sources; diffusion equations; hydrodynamic limits; stiff systems; asymptotic-preserving schemes; KINETIC-EQUATIONS; CONSERVATION-LAWS; DIFFUSIVE RELAXATION; NUMERICAL SCHEMES; STIFF RELAXATION; TRANSPORT-EQUATIONS; BOLTZMANN-EQUATION; LIMIT; TERMS;
D O I
10.1137/M1111449
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the development of Implicit-Explicit (IMEX) Runge-Kutta schemes for hyperbolic systems with multiscale relaxation. In such systems the scaling depends on an additional parameter which modifies the nature of the asymptotic behavior, which can be either hyperbolic or parabolic. Because of the multiple scalings, standard IMEX Runge-Kutta methods for hyperbolic systems with relaxation lose their efficiency, and a different approach should be adopted to guarantee asymptotic preservation in stiff regimes. We show that the proposed approach is capable of capturing the correct asymptotic limit of the system independently of the scaling used. Several numerical examples con firm our theoretical analysis.
引用
收藏
页码:2085 / 2109
页数:25
相关论文
共 50 条
  • [31] Runge-Kutta solutions of a hyperbolic conservation law with source term
    Aves, MA
    Griffiths, DF
    Higham, DJ
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (01): : 20 - 38
  • [32] Energy SSP-IMEX Runge-Kutta methods for the Cahn-Hilliard equation
    Song, Huailing
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 292 : 576 - 590
  • [33] A NEW THEORETICAL APPROACH TO RUNGE-KUTTA METHODS
    ALBRECHT, P
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (02) : 391 - 406
  • [34] A comparative analysis of explicit, IMEX and implicit strong stability preserving Runge-Kutta schemes
    Santos, Ricardo
    Alves, Leonardo
    APPLIED NUMERICAL MATHEMATICS, 2021, 159 : 204 - 220
  • [35] RUNGE-KUTTA SCHEMES FOR HAMILTONIAN-SYSTEMS
    SANZSERNA, JM
    BIT, 1988, 28 (04): : 877 - 883
  • [36] Implicit-explicit (IMEX) Runge-Kutta methods for non-hydrostatic atmospheric models
    Gardner, David J.
    Guerra, Jorge E.
    Hamon, Francois P.
    Reynolds, Daniel R.
    Ullrich, Paul A.
    Woodward, Carol S.
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2018, 11 (04) : 1497 - 1515
  • [37] The Runge-Kutta control volume discontinuous finite element method for systems of hyperbolic conservation laws
    Chen, Dawei
    Yu, Xijun
    Chen, Zhangxin
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 67 (06) : 771 - 786
  • [38] Boundary treatment of implicit-explicit Runge-Kutta method for hyperbolic systems with source terms
    Zhao, Weifeng
    Huang, Juntao
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 423 (423)
  • [39] IMPLICIT-EXPLICIT RUNGE-KUTTA SCHEMES FOR HYPERBOLIC SYSTEMS AND KINETIC EQUATIONS IN THE DIFFUSION LIMIT
    Boscarino, S.
    Pareschi, L.
    Russo, G.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (01): : A22 - A51
  • [40] LINEARLY IMPLICIT IMEX RUNGE-KUTTA METHODS FOR A CLASS OF DEGENERATE CONVECTION-DIFFUSION PROBLEMS
    Boscarino, Sebastiano
    Buerger, Raimund
    Mulet, Pep
    Russo, Giovanni
    Villada, Luis M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (02): : B305 - B331