THEORY AND NUMERICAL APPROXIMATIONS FOR A NONLINEAR 1+1 DIRAC SYSTEM

被引:16
|
作者
Bournaveas, Nikolaos [1 ]
Zouraris, Georgios E. [2 ]
机构
[1] Univ Edinburgh, Dept Math, JCMB, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Univ Crete, Dept Math, Iraklion 71409, Crete, Greece
关键词
Existence; uniqueness; finite difference methods; error estimates; ONE SPACE DIMENSION; QUADRATIC NONLINEARITIES; GALERKIN METHODS; GLOBAL-SOLUTIONS; WELL-POSEDNESS; EQUATION; SCHEMES; MODEL;
D O I
10.1051/m2an/2011071
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a nonlinear Dirac system in one space dimension with periodic boundary conditions. First, we discuss questions on the existence and uniqueness of the solution. Then, we propose an implicit-explicit finite difference method for its approximation, proving optimal order a priori error estimates in various discrete norms and showing results from numerical experiments.
引用
收藏
页码:841 / 874
页数:34
相关论文
共 50 条