Quantum Circuit Approximations and Entanglement Renormalization for the Dirac Field in 1+1 Dimensions

被引:5
|
作者
Witteveen, Freek [1 ,2 ]
Scholz, Volkher [3 ]
Swingle, Brian [4 ,5 ]
Walter, Michael [1 ,2 ,6 ]
机构
[1] Univ Amsterdam, Korteweg de Vries Inst Math, Amsterdam, Netherlands
[2] Univ Amsterdam, QuSoft, Amsterdam, Netherlands
[3] Univ Ghent, Dept Phys, Ghent, Belgium
[4] Univ Maryland, Maryland Ctr Fundamental Phys, Condensed Matter Theory Ctr, Joint Ctr Quantum Informat & Comp Sci, College Pk, MD 20742 USA
[5] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[6] Univ Amsterdam, Inst Theoret Phys, Inst Language Log & Computat, Amsterdam, Netherlands
关键词
HILBERT TRANSFORM PAIRS; WAVELET BASES; ALGEBRAS; LIMIT;
D O I
10.1007/s00220-021-04274-w
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The multiscale entanglement renormalization ansatz describes quantum many-body states by a hierarchical entanglement structure organized by length scale. Numerically, it has been demonstrated to capture critical lattice models and the data of the corresponding conformal field theories with high accuracy. However, a rigorous understanding of its success and precise relation to the continuum is still lacking. To address this challenge, we provide an explicit construction of entanglement-renormalization quantum circuits that rigorously approximate correlation functions of the massless Dirac conformal field theory. We directly target the continuum theory: discreteness is introduced by our choice of how to probe the system, not by any underlying short-distance lattice regulator. To achieve this, we use multiresolution analysis from wavelet theory to obtain an approximation scheme and to implement entanglement renormalization in a natural way. This could be a starting point for constructing quantum circuit approximations for more general conformal field theories.
引用
收藏
页码:75 / 120
页数:46
相关论文
共 50 条
  • [1] Quantum Circuit Approximations and Entanglement Renormalization for the Dirac Field in 1+1 Dimensions
    Freek Witteveen
    Volkher Scholz
    Brian Swingle
    Michael Walter
    Communications in Mathematical Physics, 2022, 389 : 75 - 120
  • [2] Chiral entanglement in massive quantum field theories in 1+1 dimensions
    Lencses, M.
    Viti, J.
    Takacs, G.
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (01)
  • [3] Chiral entanglement in massive quantum field theories in 1+1 dimensions
    M. Lencsés
    J. Viti
    G. Takács
    Journal of High Energy Physics, 2019
  • [4] Quantum massless field in 1+1 dimensions
    Derezinski, Jan
    Meissner, Krzysztof A.
    MATHEMATICAL PHYSICS OF QUANTUM MECHANICS: SELECTED AND REFEREED LECTURES FROM QMATH9, 2006, 690 : 107 - +
  • [5] Entanglement tsunami in (1+1)-dimensions
    Leichenauer, Stefan
    Moosa, Mudassir
    PHYSICAL REVIEW D, 2015, 92 (12):
  • [6] Spacetime entanglement entropy in 1+1 dimensions
    Saravani, Mehdi
    Sorkin, Rafael D.
    Yazdi, Yasaman K.
    CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (21)
  • [7] A conformally covariant massless quantum field in 1+1 dimensions
    De Bièvre, S
    Renaud, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (49): : 10901 - 10919
  • [8] Supersymmetric Dirac Hamiltonians in (1+1) dimensions revisited
    Junker, Georg
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (06):
  • [9] THEORY AND NUMERICAL APPROXIMATIONS FOR A NONLINEAR 1+1 DIRAC SYSTEM
    Bournaveas, Nikolaos
    Zouraris, Georgios E.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (04): : 841 - 874
  • [10] Superselection structure of massive quantum field theories in 1+1 dimensions
    Müger, M
    REVIEWS IN MATHEMATICAL PHYSICS, 1998, 10 (08) : 1147 - 1170