H(Z/pk) AS A THOM SPECTRUM AND TOPOLOGICAL HOCHSCHILD HOMOLOGY

被引:0
|
作者
Kitchloo, Nitu [1 ]
机构
[1] Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USA
关键词
RING SPECTRA;
D O I
10.1090/proc/14968
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this short note we study the topological Hochschild homology of Eilenberg-MacLane spectra for finite cyclic groups. In particular, we show that the Eilenberg-MacLane spectrum H(Z/p(k)) is a Thom spectrum for any prime p (except, possibly, when p = k = 2) and we also compute its topological Hoschshild homology. This yields a short proof of the results obtained by Brun [J. Pure Appl. Algebra 148 (2000), pp. 29-76], and Pirashvili [Comm. Algebra 23 (1995), pp. 1545-1549] except for the anomalous case p = k = 2.
引用
收藏
页码:3647 / 3651
页数:5
相关论文
共 50 条