Data assimilation using a GPU accelerated path integral Monte Carlo approach

被引:12
|
作者
Quinn, John C. [1 ,2 ]
Abarbanel, Henry D. I. [1 ,3 ,4 ]
机构
[1] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, BioCircuits Inst, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Marine Phys Lab, Scripps Inst Oceanog, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Ctr Theoret Biol Phys, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
Data assimilation; State and parameter estimation; GPU computing; Path integral Monte Carlo; Hodgkin-Huxley; PARAMETER-ESTIMATION; SAMPLING METHODS;
D O I
10.1016/j.jcp.2011.07.015
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The answers to data assimilation questions can be expressed as path integrals over all possible state and parameter histories. We show how these path integrals can be evaluated numerically using a Markov Chain Monte Carlo method designed to run in parallel on a graphics processing unit (GPU). We demonstrate the application of the method to an example with a transmembrane voltage time series of a simulated neuron as an input, and using a Hodgkin-Huxley neuron model. By taking advantage of GPU computing, we gain a parallel speedup factor of up to about 300, compared to an equivalent serial computation on a CPU, with performance increasing as the length of the observation time used for data assimilation increases. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:8168 / 8178
页数:11
相关论文
共 50 条
  • [11] ON PATH INTEGRAL MONTE-CARLO SIMULATIONS
    HERMAN, MF
    BRUSKIN, EJ
    BERNE, BJ
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1982, 76 (10): : 5150 - 5155
  • [12] PATH INTEGRAL MONTE-CARLO FOR FERMIONS
    KUKI, A
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1993, 205 : 16 - PHYS
  • [13] Path integral Monte carlo methods for fermions
    Ceperley, DM
    [J]. MONTE CARLO AND MOLECULAR DYNAMICS OF CONDENSED MATTER SYSTEMS, 1996, 49 : 443 - 482
  • [14] Restricted configuration path integral Monte Carlo
    Yilmaz, A.
    Hunger, K.
    Dornheim, T.
    Groth, S.
    Bonitz, M.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (12):
  • [15] Path integral Monte Carlo simulation of vortices
    Nordborg, H
    Blatter, G
    [J]. CZECHOSLOVAK JOURNAL OF PHYSICS, 1996, 46 : 1817 - 1818
  • [16] Wavelet formulation of path integral Monte Carlo
    Cho, AE
    Doll, JD
    Freeman, DL
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2002, 117 (13): : 5971 - 5977
  • [17] Permutation Sampling in Path Integral Monte Carlo
    Massimo Boninsegni
    [J]. Journal of Low Temperature Physics, 2005, 141 : 27 - 46
  • [18] A path integral method for data assimilation
    Restrepo, Juan M.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (01) : 14 - 27
  • [19] GPU accelerated Monte Carlo simulations of lattice spin models
    Weigel, M.
    Yavors'kii, T.
    [J]. PROCEEDINGS OF THE 24TH WORKSHOP ON COMPUTER SIMULATION STUDIES IN CONDENSED MATTER PHYSICS (CSP2011), 2011, 15 : 92 - 96
  • [20] GPU Accelerated Monte Carlo Simulation for Radiotherapy Dose Calculation
    Zhuge, Y.
    Xie, H.
    Cheng, J.
    Miller, R. W.
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2009, 75 (03): : S702 - S702