Data assimilation using a GPU accelerated path integral Monte Carlo approach

被引:12
|
作者
Quinn, John C. [1 ,2 ]
Abarbanel, Henry D. I. [1 ,3 ,4 ]
机构
[1] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, BioCircuits Inst, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Marine Phys Lab, Scripps Inst Oceanog, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Ctr Theoret Biol Phys, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
Data assimilation; State and parameter estimation; GPU computing; Path integral Monte Carlo; Hodgkin-Huxley; PARAMETER-ESTIMATION; SAMPLING METHODS;
D O I
10.1016/j.jcp.2011.07.015
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The answers to data assimilation questions can be expressed as path integrals over all possible state and parameter histories. We show how these path integrals can be evaluated numerically using a Markov Chain Monte Carlo method designed to run in parallel on a graphics processing unit (GPU). We demonstrate the application of the method to an example with a transmembrane voltage time series of a simulated neuron as an input, and using a Hodgkin-Huxley neuron model. By taking advantage of GPU computing, we gain a parallel speedup factor of up to about 300, compared to an equivalent serial computation on a CPU, with performance increasing as the length of the observation time used for data assimilation increases. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:8168 / 8178
页数:11
相关论文
共 50 条
  • [1] GPU-accelerated variational path integral Monte Carlo simulations
    Hinde, Robert J.
    Harrison, Robert
    Peterson, Greg
    Kakani, Venkata Prasanth
    Mudhasani, Shanthan
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240
  • [2] Energy levels and expectation values via accelerated path integral Monte Carlo
    Stojiljkovic, D.
    Bogojevic, A.
    Balaz, A.
    [J]. 5TH INTERNATIONAL SYMPOSIUM ON QUANTUM THEORY AND SYMMETRIES QTS5, 2008, 128
  • [3] Configuration Path Integral Monte Carlo
    Schoof, T.
    Bonitz, M.
    Filinov, A.
    Hochstuhl, D.
    Dufty, J. W.
    [J]. CONTRIBUTIONS TO PLASMA PHYSICS, 2011, 51 (08) : 687 - 697
  • [4] PATH INTEGRAL MONTE-CARLO USING MULTIGRID TECHNIQUES
    JANKE, W
    SAUER, T
    [J]. CHEMICAL PHYSICS LETTERS, 1993, 201 (5-6) : 499 - 505
  • [5] Accelerated GPU based SPECT Monte Carlo simulations
    Garcia, Marie-Paule
    Bert, Julien
    Benoit, Didier
    Bardies, Manuel
    Visvikis, Dimitris
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (11): : 4001 - 4018
  • [6] Thermal dissociation of dipositronium: Path-integral Monte Carlo approach
    Kylanpaa, Ilkka
    Rantala, Tapio T.
    [J]. PHYSICAL REVIEW A, 2009, 80 (02):
  • [7] Hydrogen molecule ion: Path-integral monte carlo approach
    Leino, Kylanpaa M.
    Rantala, T. T.
    [J]. PHYSICAL REVIEW A, 2007, 76 (05):
  • [8] Accelerated Monte Carlo simulation on the chemical stage in water radiolysis using GPU
    Tian, Zhen
    Jiang, Steve B.
    Jia, Xun
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2017, 62 (08): : 3081 - 3096
  • [9] Permutation sampling in Path Integral Monte Carlo
    Boninsegni, M
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 2005, 141 (1-2) : 27 - 46
  • [10] Path integral grand canonical Monte Carlo
    Wang, QY
    Johnson, JK
    Broughton, JQ
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (13): : 5108 - 5117