Endpoint-based Discriminability of Minimum Energy Inputs

被引:0
|
作者
Menolascino, Delsin [1 ]
Ching, ShiNung [1 ,2 ]
机构
[1] Washington Univ, Dept Elect & Syst Engn, St Louis, MO 63130 USA
[2] Washington Univ, Div Biol & Biomed Sci, St Louis, MO 63130 USA
基金
美国国家科学基金会;
关键词
NETWORKS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Complex neural networks, such as those found in the human brain, are able to very accurately discriminate and classify external stimuli. Some of their topological and computational properties have been extracted and used to great effect by the artificial intelligence community. However, even our best simulated neural networks are very pale abstractions of reality, partly because (in general) they fail to account for the temporal dynamics and recurrence inherent in natural neural networks, and instead employ feed-forward architecture and discrete, simultaneous activity. In this paper we begin to develop an intuitive, geometric framework to explore the ways in which different inputs could be discriminated in recurrent linear dynamical networks, with the eventual goal of being able to facilitate a transition to more realistic and effective artificial networks. We first establish a useful, closed-form measure on the space of minimum-energy inputs to a linear system, which allows an elucidation of how discrepancies between inputs impact output trajectories in the state space. We characterize, to an extent, the relationship between input and output difference as it relates to system dynamics as manifest in the geometry of the reachable output space. We draw from this characterization principles which may be employed in the design of dynamic, recurrent artificial networks for input discrimination.
引用
收藏
页码:3038 / 3043
页数:6
相关论文
共 50 条
  • [32] Extension of minimum variance estimation for systems with unknown inputs
    Darouach, M
    Zasadzinski, A
    Boutayeb, M
    AUTOMATICA, 2003, 39 (05) : 867 - 876
  • [33] Endpoint energy of linear medical accelerators
    Krmar, M
    Ganezer, K
    Pantelic, G
    Krstonosic, C
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2004, 532 (03): : 533 - 537
  • [34] Necessary and sufficient conditions for the minimum energy control of positive discrete-time linear systems with bounded inputs
    Kaczorek, T.
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2014, 62 (01) : 85 - 89
  • [35] Minimum energy control of positive 2D continuous-discrete linear systems with bounded inputs
    Kaczorek, Tadeusz
    ARCHIVES OF CONTROL SCIENCES, 2015, 25 (03): : 319 - 331
  • [36] DISCRIMINABILITY METRIC BASED ON HUMAN CONTRAST SENSITIVITY
    FARRELL, JE
    FITZHUGH, AE
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1990, 7 (10): : 1976 - 1984
  • [37] Optimal control of reinforced plate based on the minimum energy
    Liu L.
    Qiu J.
    Ji H.
    Liu C.
    Transactions of Nanjing University of Aeronautics and Astronautics, 2016, 33 (02) : 166 - 172
  • [38] Shape optimization of composites based on minimum potential energy
    Prochazka, P.
    Computer Aided Optimum Design in Engineering X, 2007, 91 : 57 - 66
  • [39] A Minimum-Energy-Based Algorithm for Multichannel Reconstruction
    Sun, Liwei
    Yu, Ze
    Li, Chun-Sheng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [40] Optimal Control of Reinforced Plate Based on the Minimum Energy
    Liu Lu
    Qiu Jinhao
    Ji Hongli
    Liu Canchang
    TransactionsofNanjingUniversityofAeronauticsandAstronautics, 2016, 33 (02) : 166 - 172