Adaptive multiresolution analysis on the dyadic topological group

被引:2
|
作者
Sendov, B [1 ]
机构
[1] Bulgarian Acad Sci, Ctr Informat & Comp Technol, BU-1113 Sofia, Bulgaria
基金
新加坡国家研究基金会;
关键词
D O I
10.1006/jath.1998.3234
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A type of multiresolution analysis on the space of continuous functions defined on the dyadic topological group is proposed, depending on free parameters. The appropriate choice of parameters is used to adapt this analysis to a given function. (C) 1999 Academic Press.
引用
收藏
页码:258 / 280
页数:23
相关论文
共 50 条
  • [1] An adaptive multiresolution method on dyadic grids: Application to transport equations
    Castro, Douglas A.
    Gomes, Sonia M.
    Stolfi, Jorge
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (15) : 3636 - 3646
  • [2] High-order adaptive finite-volume schemes in the context of multiresolution analysis for dyadic grids
    Castro, Douglas A.
    Gomes, Sonia M.
    Stolfi, Jorge
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2016, 35 (01): : 1 - 16
  • [3] High-order adaptive finite-volume schemes in the context of multiresolution analysis for dyadic grids
    Douglas A. Castro
    Sônia M. Gomes
    Jorge Stolfi
    [J]. Computational and Applied Mathematics, 2016, 35 : 1 - 16
  • [4] Multiresolution analysis for surfaces of arbitrary topological type
    Lounsbery, M
    DeRose, TD
    Warren, J
    [J]. ACM TRANSACTIONS ON GRAPHICS, 1997, 16 (01): : 34 - 73
  • [5] Multiresolution molecular mechanics: Adaptive analysis
    Biyikli, Emre
    To, Albert C.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 305 : 682 - 702
  • [6] Adaptive multiresolution analysis based on synchronization
    Pesenson, Meyer Z.
    Pesenson, Isaac Z.
    [J]. PHYSICAL REVIEW E, 2011, 84 (04)
  • [7] Shannon multiresolution analysis on the Heisenberg group
    Mayeli, Azita
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 348 (02) : 671 - 684
  • [8] Multiresolution Topological Simplification
    Xia, Kelin
    Zhao, Zhixiong
    Wei, Guo-Wei
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2015, 22 (09) : 887 - 891
  • [9] Wavelet analysis on the Cantor dyadic group
    Lang, WC
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 1998, 24 (03): : 533 - 544
  • [10] Dyadic mappings and dyadic superparacompact topological groups
    Musaev, DK
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2005, 46 (04) : 675 - 680