Wavelet analysis on the Cantor dyadic group

被引:0
|
作者
Lang, WC [1 ]
机构
[1] Indiana Univ SE, Div Nat Sci, New Albany, IN 47150 USA
来源
HOUSTON JOURNAL OF MATHEMATICS | 1998年 / 24卷 / 03期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Compactly supported orthogonal wavelets are built on the Canter dyadic group (the dyadic or 2-series local field). Necessary and sufficient conditions are given on a trigonometric polynomial scaling filter for a multiresolution analysis to result. A Lipschitz regularity condition is defined and an unconditional L-P-convergence result is given for regular wavelet expansions (p > 1). Wavelets are given whose scaling filter is a trigonometric polynomial with 2(n) many terms; regular wavelets with filters with 8 terms are detailed. These wavelets are identified with certain Walsh series on the real line. A Mallat tree algorithm is given for the wavelets.
引用
收藏
页码:533 / 544
页数:12
相关论文
共 50 条
  • [1] Construction of MRA and non-MRA wavelet sets on Cantor dyadic group
    Mahapatra, Prasadini
    Singh, Divya
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 167
  • [2] Uncertainty principle for the Cantor dyadic group
    Krivoshein, A. V.
    Lebedeva, E. A.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 423 (02) : 1231 - 1242
  • [3] Examples of frames on the Cantor dyadic group
    Yuri A. Farkov
    [J]. Journal of Mathematical Sciences, 2012, 187 (1) : 22 - 34
  • [4] Orthogonal wavelets on the cantor dyadic group
    Lang, WC
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (01) : 305 - 312
  • [5] Wavelet expansions on the Cantor group
    Farkov, Yu. A.
    [J]. MATHEMATICAL NOTES, 2014, 96 (5-6) : 996 - 1007
  • [6] Wavelet expansions on the Cantor group
    Yu. A. Farkov
    [J]. Mathematical Notes, 2014, 96 : 996 - 1007
  • [7] Scaling sets and generalized scaling sets on Cantor dyadic group
    Mahapatra, Prasadini
    Singh, Divya
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2020, 18 (04)
  • [8] Walsh and wavelet methods for differential equations on the Cantor group
    Lebedeva, E.
    Skopina, M.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 430 (02) : 593 - 613
  • [9] Dyadic wavelet analysis of PDA signals
    Duan, J
    Oweis, IS
    [J]. SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2005, 25 (7-10) : 661 - 677
  • [10] A note on dyadic approximation in Cantor?s set
    Allen, Demi
    Baker, Simon
    Chow, Sam
    Yu, Han
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2023, 34 (01): : 190 - 197