Homogenization and correctors for the wave equation in non periodic perforated domains

被引:0
|
作者
Donato, Patrizia [1 ]
Gaveau, Florian [2 ]
机构
[1] Univ Rouen, CNRS, UMR 6085, Lab Math Raphael Salem, F-76801 St Etienne, France
[2] Univ Paris 06, CNRS, UMR 7598, Lab Jacques Louis Lions, F-75252 Paris 05, France
关键词
homogenization; correctors; H-0-convergence; wave equation;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider here the wave equation in a (not necessarily periodic) perforated domain, with a Neumann condition on the boundary of the holes. Assuming H-0-convergence ([ ]) on the elliptic part of the operator, we prove two main theorems: a convergence result and a corrector one. To prove the corrector result, we make use of a suitable family of elliptic local correctors given in [ ] whose columns are piecewise locally square integrable gradients. As in the case without holes ([ ]), some additional assumptions on the data are needed.
引用
收藏
页码:97 / 124
页数:28
相关论文
共 50 条
  • [41] Homogenization in perforated domains with mixed conditions
    Cardone, G
    D'Apice, C
    De Maio, U
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2002, 9 (03): : 325 - 346
  • [42] Regularized homogenization on irregularly perforated domains
    Heida, Martin
    Jahnel, Benedikt
    Vu, Anh Duc
    NETWORKS AND HETEROGENEOUS MEDIA, 2025, 20 (01) : 165 - 212
  • [43] Periodic homogenization of geometric equations without perturbed correctors
    Jang, Jiwoong
    MATHEMATISCHE ANNALEN, 2025, 391 (02) : 3143 - 3180
  • [44] CORRECTORS FOR THE HOMOGENIZATION OF THE WAVE AND HEAT-EQUATIONS
    BRAHIMOTSMANE, S
    FRANCFORT, GA
    MURAT, F
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1992, 71 (03): : 197 - 231
  • [45] The "strange term" in the periodic homogenization for multivalued Leray-Lions operators in perforated domains
    Damlamian A.
    Meunier N.
    Ricerche di Matematica, 2010, 59 (2) : 281 - 312
  • [46] An identification problem for a time periodic nonlinear wave equation in non cylindrical domains
    Bui An Ton
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (01) : 182 - 193
  • [47] Asymptotic analysis of a semi-linear elliptic system in perforated domains: Well-posedness and correctors for the homogenization limit
    Khoa, Vo Anh
    Muntean, Adrian
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 439 (01) : 271 - 295
  • [48] APPROXIMATE BOUNDARY CONTROLLABILITY FOR THE WAVE-EQUATION IN PERFORATED DOMAINS
    CIORANESCU, D
    DONATO, P
    ZUAZUA, E
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1994, 32 (01) : 35 - 50
  • [49] Homogenization for a nonlinear wave equation in domains with holes of small capacity
    Cavalcanti, M. M.
    Cavalcanti, V. N. Domingos
    Andrade, D.
    Ma, T. F.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2006, 16 (04) : 721 - 743
  • [50] The application of non-periodic homogenization of elastic equation
    Zhang LingYun
    Sun HePing
    Xu JianQiao
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2020, 63 (01): : 131 - 140