Extremal functions for the Moser-Trudinger inequalities on compact Riemannian manifolds

被引:137
|
作者
Li, YX [1 ]
机构
[1] Tsing Hua Univ, Dept Math Sci, Beijing 100084, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2005年 / 48卷 / 05期
关键词
Moser-Trudinger inequality; extrernal function; n-Lapalace Green function;
D O I
10.1360/04ys0050
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (M,g) be a compact Riemannian manifold without boundary, and (N,g) a compact Riemannian manifold with boundary. We will prove in this paper that the integral(M) udV(g)=0, integral(sup)(M) vertical bar del u vertical bar(n)dV(g)=1 integral(M) (e alpha n vertical bar u vertical bar n/n-1dVg), integral(M) (vertical bar del vertical bar(n) + vertical bar u vertical bar)dV(g)=1 integral(M) (e alpha n vertical bar u vertical bar n/n-1dVg), and u vertical bar partial derivative N = 0, integral(sup)(M)vertical bar del u vertical bar dV(gN)=1 integral(N) (e alpha n vertical bar u vertical bar n/n-1dVgN), can be attained. Our proof uses the blow-up analysis.
引用
收藏
页码:618 / 648
页数:31
相关论文
共 50 条