Existence Results for a Functional Boundary Value Problem on an Infinite Interval

被引:0
|
作者
Mavridis, Kyriakos G. [1 ]
Tsamkros, Panagiotis Ch [1 ]
机构
[1] Univ Ioannina, Dept Math, GR-45110 Ioannina, Greece
来源
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA | 2011年 / 54卷 / 01期
关键词
Avery-Henderson fixed point theorem; Boundary value problem on the half-line; Multiple positive solutions; Functional second-order differential equations; 2ND-ORDER DIFFERENTIAL-EQUATIONS; POSITIVE SOLUTIONS; UNBOUNDED-DOMAINS;
D O I
10.1619/fesi.54.53
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on a fixed point theorem due to Avery and Henderson, we prove that a second order functional boundary value problem has at least two positive solutions.
引用
收藏
页码:53 / 68
页数:16
相关论文
共 50 条
  • [31] LINEAR 2-POINT BOUNDARY-VALUE PROBLEM ON AN INFINITE INTERVAL
    ROBERTSON, TN
    [J]. MATHEMATICS OF COMPUTATION, 1971, 25 (115) : 475 - +
  • [32] On a Multipoint Boundary Value Problem for a Fractional Order Differential Inclusion on an Infinite Interval
    Nyamoradi, Nemat
    Baleanu, Dumitru
    Agarwal, Ravi P.
    [J]. ADVANCES IN MATHEMATICAL PHYSICS, 2013, 2013
  • [33] EXISTENCE OF SOLUTIONS TO A BOUNDARY-VALUE PROBLEM FOR AN INFINITE SYSTEM OF DIFFERENTIAL EQUATIONS
    Banas, Jozef
    Mursaleen, Mohammad
    Rizvi, Syed M. H.
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [34] The positive solutions of infinite-point boundary value problem of fractional differential equations on the infinite interval
    Xiaochen Li
    Xiping Liu
    Mei Jia
    Luchao Zhang
    [J]. Advances in Difference Equations, 2017
  • [35] The positive solutions of infinite-point boundary value problem of fractional differential equations on the infinite interval
    Li, Xiaochen
    Liu, Xiping
    Jia, Mei
    Zhang, Luchao
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [36] Existence of positive solutions for integral boundary value problems of fractional differential equations on infinite interval
    Li, Xiaochen
    Liu, Xiping
    Jia, Mei
    Li, Yan
    Zhang, Sha
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (06) : 1892 - 1904
  • [37] Existence of Solutions for Fractional Multi-Point Boundary Value Problems on an Infinite Interval at Resonance
    Zhang, Wei
    Liu, Wenbin
    [J]. MATHEMATICS, 2020, 8 (01)
  • [38] THE EXISTENCE OF SOLUTIONS FOR INTEGRAL BOUNDARY VALUE PROBLEMS WITH P-LAPLACIAN OPERATORS ON INFINITE INTERVAL
    Fenizri, F.
    Khaldi, R.
    Guezane-Lakoud, A.
    [J]. JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2021,
  • [39] The existence of solutions for integral boundary value problems with P-laplacian operators on infinite interval
    Fenizri, F.
    Khaldi, R.
    Guezane-Lakoud, A.
    [J]. Journal of Nonlinear Functional Analysis, 2021, 2021 (01):
  • [40] EXISTENCE RESULTS FOR A SECOND ORDER NONLOCAL BOUNDARY VALUE PROBLEM AT RESONANCE
    Szymanska-Debowska, Katarzyna
    [J]. STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2016, 53 (01) : 42 - 52