Bioprocess microfluidics: applying microfluidic devices for bioprocessing

被引:41
|
作者
Marques, Marco P. C. [1 ]
Szita, Nicolas [1 ]
机构
[1] UCL, Dept Biochem Engn, Bernard Katz Bldg,Gordon St, London WC1H 0AH, England
基金
英国生物技术与生命科学研究理事会; 英国工程与自然科学研究理事会;
关键词
PRODUCT REMOVAL STRATEGIES; 3D CELL-CULTURE; OXYGEN-TRANSFER; BIOMATERIALS; INTEGRATION; TECHNOLOGY; BIOREACTOR; CHALLENGES; SEPARATION; MODELS;
D O I
10.1016/j.coche.2017.09.004
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Scale-down approaches have long been applied in bioprocessing to resolve scale-up problems. Miniaturized bioreactors have thrived as a tool to obtain process relevant data during early-stage process development. Microfluidic devices are an attractive alternative in bioprocessing development due to the high degree of control over process variables afforded by the laminar flow, and the possibility to reduce time and cost factors. Data quality obtained with these devices is high when integrated with sensing technology and is invaluable for scale-translation and to assess the economical viability of bioprocesses. Microfluidic devices as upstream process development tools have been developed in the area of small molecules, therapeutic proteins, and cellular therapies. More recently, they have also been applied to mimic downstream unit operations.
引用
收藏
页码:61 / 68
页数:8
相关论文
共 50 条
  • [1] Downstream bioprocess characterisation within microfluidic devices
    Marques, Marco
    Kruhne, Ulrich
    Szita, Nicolas
    [J]. NEW BIOTECHNOLOGY, 2016, 33 : S28 - S28
  • [2] Microfluidic Devices: Useful Tools for Bioprocess Intensification
    Marques, Marco P. C.
    Fernandes, Pedro
    [J]. MOLECULES, 2011, 16 (10): : 8368 - 8401
  • [3] Particle separation in microfluidic devices - SPLITT fractionation and microfluidics
    Zhang, YH
    Barber, RW
    Emerson, DR
    [J]. CURRENT ANALYTICAL CHEMISTRY, 2005, 1 (03) : 345 - 354
  • [4] Microfluidics meets Systems Biology:Microfluidic Devices for Metabolic Analysis
    Wurm, M.
    Mueller, J.
    Zeng, A. -P.
    [J]. JOURNAL OF BIOTECHNOLOGY, 2010, 150 : S549 - S549
  • [5] CFD for Microfluidics: A Workflow for Setting Up the Simulation of Microfluidic Devices
    Ebner, Philipp
    Wille, Robert
    [J]. 2023 26TH EUROMICRO CONFERENCE ON DIGITAL SYSTEM DESIGN, DSD 2023, 2023, : 770 - 775
  • [6] From microdroplets to microfluidics: Selective emulsion separation in microfluidic devices
    Fidalgo, Luis M.
    Whyte, Graeme
    Bratton, Daniel
    Kaminski, Clemens F.
    Abell, Chris
    Huck, Wilhelm T. S.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (11) : 2042 - 2045
  • [7] Microfluidics for cell factory and bioprocess development
    Bjork, Sara M.
    Joensson, Haakan N.
    [J]. CURRENT OPINION IN BIOTECHNOLOGY, 2019, 55 : 95 - 102
  • [8] Mail-order microfluidics: evaluation of stereolithography for the production of microfluidic devices
    Au, Anthony K.
    Lee, Wonjae
    Folch, Albert
    [J]. LAB ON A CHIP, 2014, 14 (07) : 1294 - 1301
  • [9] Multidisciplinary Role of Microfluidics for Biomedical and Diagnostic Applications: Biomedical Microfluidic Devices
    Oh, Kwang W.
    [J]. MICROMACHINES, 2017, 8 (12):
  • [10] An integrated microfluidic device for continuous bioprocessing
    Wahab, Malik Abdul
    Domingues, C.
    Azevedo, Ana M.
    Chu, Virginia
    Conde, Joao Pedro
    Aires-Barros, M. Raquel
    [J]. SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 332