Slepian-type codes on a flat torus

被引:1
|
作者
Costa, SIR [1 ]
Agustini, E [1 ]
Muniz, M [1 ]
Palazzo, R [1 ]
机构
[1] UNICAMP, Math Inst, BR-13081970 Campinas, SP, Brazil
来源
2000 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS | 2000年
关键词
D O I
10.1109/ISIT.2000.866348
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Quotients of IR2 by translation groups are metric spaces known as flat tori. We start from codes which are vertices of closed graphs on a flat torus and, through an identification of these with a 2-dimensional surface in a 3-dimensional sphere in IR4, we show such graph signal sets generate [M, 4] Slepian-type cyclic codes for IM = a(2) + b(2); a, 6 is an element of Z, gcd(a, b) = 1. The cyclic labeling of these codes corresponds to walking step-by-step on a (a, b)-type knot on a flat torus and its performance is better when compared with either the standard M-PSK or any cartesian product of M-1-PSK and M-2-PSK, M1M2 = M.
引用
收藏
页码:58 / 58
页数:1
相关论文
共 50 条
  • [31] Symmetry Groups Associated with Tilings of a Flat Torus
    Loyola, M.
    De Las Penas, M.
    Estrada, G.
    Santoso, E.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2014, 70 : C1428 - C1428
  • [32] An entropic characterization of the flat metrics on the two torus
    Patrick Bernard
    Clémence Labrousse
    Geometriae Dedicata, 2016, 180 : 187 - 201
  • [33] Flats and the flat torus theorem in systolic spaces
    Elsner, Tomasz
    GEOMETRY & TOPOLOGY, 2009, 13 : 661 - 698
  • [34] Symmetry groups associated with tilings on a flat torus
    Loyola, Mark L.
    De Las Penas, Ma. Louise Antonette N.
    Estrada, Grace M.
    Santoso, Eko Budi
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2015, 71 : 99 - 110
  • [35] An entropic characterization of the flat metrics on the two torus
    Bernard, Patrick
    Labrousse, Clemence
    GEOMETRIAE DEDICATA, 2016, 180 (01) : 187 - 201
  • [36] Phase Unwrapping with Multiple Wavelengths on the Flat Torus
    Benedetti, Arrigo
    2020 54TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2020, : 1301 - 1304
  • [37] ON THE BEHAVIOR OF TRAJECTORIES OF SCATTERING BILLIARDS ON THE FLAT TORUS
    BABENKO, IK
    MATHEMATICS OF THE USSR-SBORNIK, 1992, 72 (01): : 207 - 220
  • [38] NON-BOUNDED VIBRATIONS OF FLAT TORUS
    ALLOUCHE, JP
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 287 (06): : 391 - 393
  • [39] On covering the square flat torus by congruent discs
    Joos, Antal
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2019, 75 : 113 - 126
  • [40] New results of efficient Slepian-Wolf compression using turbo codes
    Li, J
    PROCEEDINGS OF THE SIXTH IASTED INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING, 2004, : 573 - 578