Analytic approximation of rational matrix functions

被引:2
|
作者
Peller, V. V. [1 ]
Vasyunin, V. I.
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[2] VA Steklov Math Inst, St Petersburg Branch, St Petersburg 191023, Russia
关键词
superoptimal approximation; Hankel operator; McMillan degree; rational matrix function;
D O I
10.1512/iumj.2007.56.3075
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a rational matrix function Phi with poles outside the unit circle, we estimate the degree of the unique superoptimal approximation A Phi by matrix functions analytic in the unit disk. We obtain sharp estimates in the case of 2 x 2 matrix functions. It turns out that "generically" deg A Phi <= deg Phi - 2. We prove that for an arbitrary 2 x 2 rational function Phi, deg A Phi <= 2 deg Phi - 3 whenever deg Phi >= 2. On the other hand, for k >= 2, we construct a 2 x 2 matrix function Phi, for which deg Phi = k, while deg A Phi = 2k - 3. Moreover, we conduct a detailed analysis of the situation when the inequality deg A Phi <= deg Phi - 2 can violate and obtain best possible results.
引用
收藏
页码:1913 / 1937
页数:25
相关论文
共 50 条
  • [41] Superlinear convergence of the rational Arnoldi method for the approximation of matrix functions
    Bernhard Beckermann
    Stefan Güttel
    Numerische Mathematik, 2012, 121 : 205 - 236
  • [42] A subspace approach for approximation of rational matrix functions to sampled data
    McKelvey, T
    Helmersson, A
    PROCEEDINGS OF THE 35TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1996, : 3660 - 3661
  • [43] ALGORITHMS FOR THE RATIONAL APPROXIMATION OF MATRIX-VALUED FUNCTIONS\ast
    Gosea, Ion Victor
    Guttel, Stefan
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (05): : A3033 - A3054
  • [44] HANKEL NORM APPROXIMATION OF REAL SYMMETRICAL RATIONAL MATRIX FUNCTIONS
    BALL, JA
    RAN, ACM
    SYSTEMS & CONTROL LETTERS, 1987, 9 (02) : 105 - 115
  • [45] Superlinear convergence of the rational Arnoldi method for the approximation of matrix functions
    Beckermann, Bernhard
    Guettel, Stefan
    NUMERISCHE MATHEMATIK, 2012, 121 (02) : 205 - 236
  • [46] APPROXIMATION BY RATIONAL FUNCTIONS
    REDDY, AR
    JOURNAL OF APPROXIMATION THEORY, 1976, 16 (02) : 199 - 200
  • [47] APPROXIMATION BY RATIONAL FUNCTIONS
    ERDOS, P
    NEWMAN, DJ
    REDDY, AR
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1977, 15 (APR): : 319 - 328
  • [48] APPROXIMATION BY RATIONAL FUNCTIONS
    DEVORE, RA
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 98 (04) : 601 - 604
  • [49] APPROXIMATION BY RATIONAL FUNCTIONS
    REDDY, AR
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (06): : A638 - A638
  • [50] RATIONAL APPROXIMATION OF FUNCTIONS
    PETRUSHEV, PP
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1976, 29 (10): : 1405 - 1408