Brain tumor segmentation using cluster ensemble and deep super learner for classification of MRI

被引:9
|
作者
Ramya, P. [1 ]
Thanabal, M. S. [2 ]
Dharmaraja, C. [3 ]
机构
[1] Univ Coll Engn, Dept Comp Sci & Engn, Dindigul 624622, India
[2] PSNA Coll Engn & Technol, Dept Comp Sci & Engn, Dindigul 624622, India
[3] Univ Coll Engn, Dept Mech Engn, Dindigul 624622, India
关键词
Image registration; K-means clustering; Self-organization map (SOM); Gaussian mixture model (GMM); Density featured deep super learning (DSL) method;
D O I
10.1007/s12652-021-03390-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Accurate segmentation and classification takes place a major role in the medical image processing to detect and locate the abnormal tissue region. In this, the three different types of brain magnetic resonance imaging (MRI) image source such as Type-1, Type-2 and Fluid attenuated inversion recovery are combined by the image registration process to detect the clear region of the tumor tissue since, the region of interest identification in the single image data contains less key points to define it. In this paper, we implement the ensemble technique of image segmentation to segment the tumor region of the brain MRI image. For the segmentation process, the images are pre-processed by Laplacian cellular automata filtering method and segmented by ensemble of different clustering method such as K-means, fuzzy based clustering, self-organization map (SOM) and ensemble of Gaussian mixture model, K-means, SOM and their results are compared. This ensemble cluster label is consider as the segmented result and classify the abnormalities by using deep super learning method. The experimental results and the comparison charts defines the performance rate of proposed method comparing to the other state-of-art methods. The average accuracy for the proposed work is 98% in Ensemble 1 and 97% in Ensemble 2 methods for the BraTS brain image dataset.
引用
收藏
页码:9939 / 9952
页数:14
相关论文
共 50 条
  • [41] Classification and Segmentation of MRI Images of Brain Tumors Using Deep Learning and Hybrid Approach
    Singh, Sugandha
    Saxena, Vipin
    INTERNATIONAL JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING SYSTEMS, 2024, 15 (02) : 163 - 172
  • [42] An Ensemble of Optimal Deep Learning Features for Brain Tumor Classification
    Aziz, Ahsan
    Attique, Muhammad
    Tariq, Usman
    Nam, Yunyoung
    Nazir, Muhammad
    Jeong, Chang-Won
    Mostafa, Reham R.
    Sakr, Rasha H.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 69 (02): : 2653 - 2670
  • [43] A comprehensive review on brain tumor segmentation and classification of MRI images
    Rao, Champakamala Sundar
    Karunakara, K.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (12) : 17611 - 17643
  • [44] Automated Brain Tumor Segmentation and Classification Through MRI Images
    Gull, Sahar
    Akbar, Shahzad
    Hassan, Syed Ale
    Rehman, Amjad
    Sadad, Tariq
    EMERGING TECHNOLOGY TRENDS IN INTERNET OF THINGS AND COMPUTING, TIOTC 2021, 2022, : 182 - 194
  • [45] Enhancing MRI Brain Tumor Segmentation with an Additional Classification Network
    Nguyen, Hieu T.
    Le, Tung T.
    Nguyen, Thang V.
    Nguyen, Nhan T.
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT I, 2021, 12658 : 503 - 513
  • [46] A comprehensive review on brain tumor segmentation and classification of MRI images
    Champakamala Sundar Rao
    K. Karunakara
    Multimedia Tools and Applications, 2021, 80 : 17611 - 17643
  • [47] Snapshot Ensemble on Brain MRI Segmentation
    Paudel, Bishnu
    Zwiggelaar, Reyer
    Akanyeti, Otar
    ADVANCES IN COMPUTATIONAL INTELLIGENCE SYSTEMS, UKCI 2022, 2024, 1454 : 392 - 402
  • [48] Brain Tumor Detection and Classification Using Deep Learning Models on MRI Scans
    Reddy L.C.S.
    Elangovan M.
    Vamsikrishna M.
    Ravindra C.
    EAI Endorsed Transactions on Pervasive Health and Technology, 2024, 10
  • [49] Detection and Classification of Brain Tumor in MRI Images using Deep Convolutional Network
    Bhanothu, Yakub
    Kamalakannan, Anandhanarayanan
    Rajamanickam, Govindaraj
    2020 6TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING AND COMMUNICATION SYSTEMS (ICACCS), 2020, : 248 - 252
  • [50] Brain Tumor MRI Classification Using a Novel Deep Residual and Regional CNN
    Zahoor, Mirza Mumtaz
    Khan, Saddam Hussain
    Alahmadi, Tahani Jaser
    Alsahfi, Tariq
    Mazroa, Alanoud S. Al
    Sakr, Hesham A.
    Alqahtani, Saeed
    Albanyan, Abdullah
    Alshemaimri, Bader Khalid
    BIOMEDICINES, 2024, 12 (07)