A new fifth-order nonlinear integrable equation: multiple soliton solutions

被引:50
|
作者
Wazwaz, Abdul-Majid [1 ]
机构
[1] St Xavier Univ, Dept Math, Chicago, IL 60655 USA
关键词
1-SOLITON SOLUTION;
D O I
10.1088/0031-8949/83/01/015012
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we introduce a new fifth-order nonlinear integrable equation. The Hereman-Nuseri method is used to derive multiple soliton solutions and hence to confirm complete integrability of this equation. The resonance phenomenon of this is investigated.
引用
收藏
页数:3
相关论文
共 50 条
  • [41] Existence of Solitary Wave Solutions for a Nonlinear Fifth-Order KdV Equation
    Xiaofeng Li
    Zengji Du
    Jiang Liu
    [J]. Qualitative Theory of Dynamical Systems, 2020, 19
  • [42] Existence of Solitary Wave Solutions for a Nonlinear Fifth-Order KdV Equation
    Li, Xiaofeng
    Du, Zengji
    Liu, Jiang
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2020, 19 (01)
  • [43] New solitary wave and multiple soliton solutions for fifth order nonlinear evolution equation with time variable coefficients
    Jaradat, H. M.
    Syam, Muhammed
    Jaradat, M. M. M.
    Mustafa, Zead
    Momani, S.
    [J]. RESULTS IN PHYSICS, 2018, 8 : 977 - 980
  • [44] Multiple-pole soliton, periodic and rational solutions of the fifth-order modified Korteweg–de Vries equation
    Nan Liu
    [J]. The European Physical Journal Plus, 137
  • [45] A Fifth-Order Korteweg-de Vries Equation for Shallow Water with Surface Tension: Multiple Soliton Solutions
    Wazwaz, A. M.
    [J]. ACTA PHYSICA POLONICA A, 2016, 130 (03) : 679 - 682
  • [46] Multi-Soliton and Rational Solutions for the Extended Fifth-Order KdV Equation in Fluids
    Meng, Gao-Qing
    Gao, Yi-Tian
    Zuo, Da-Wei
    Shen, Yu-Jia
    Sun, Yu-Hao
    Yu, Xin
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2015, 70 (07): : 559 - 566
  • [47] Two integrable third-order and fifth-order KdV equations with time-dependent coefficients: Multiple real and multiple complex soliton solutions
    Wazwaz, Abdul-Majid
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2019, 29 (06) : 2093 - 2102
  • [48] STABILITY OF A FIFTH-ORDER NONLINEAR DIFFERENTIAL EQUATION
    SINHA, ASC
    [J]. PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1971, 59 (09): : 1382 - &
  • [49] Solvability of a nonlinear fifth-order difference equation
    Stevic, Stevo
    Iricanin, Bratislav
    Kosmala, Witold
    Smarda, Zdenek
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (05) : 1687 - 1701
  • [50] Comment on ‘two new integrable fourth-order nonlinear equations: multiple soliton solutions and multiple complex soliton solutions’
    Yunxia Tian
    Mengxia Zhang
    [J]. Nonlinear Dynamics, 2022, 107 : 3175 - 3176