A seasonal algorithm of the snow-covered area fraction for mountainous terrain

被引:7
|
作者
Helbig, Nora [1 ]
Schirmer, Michael [1 ]
Magnusson, Jan [2 ]
Mader, Flavia [1 ,3 ]
van Herwijnen, Alec [1 ]
Queno, Louis [1 ]
Buhler, Yves [1 ]
Deems, Jeff S. [4 ]
Gascoin, Simon [5 ]
机构
[1] WSL Inst Snow & Avalanche Res SLF, Davos, Switzerland
[2] Statkraft AS, Oslo, Norway
[3] Univ Bern, Inst Geog, Bern, Switzerland
[4] Univ Colorado, Natl Snow & Ice Data Ctr, Boulder, CO 80309 USA
[5] Univ Toulouse, Ctr Etud Spatiales Biosphere, CESBIO, CNES,CNRS,INRAE,IRD,UPS, F-31401 Toulouse, France
来源
CRYOSPHERE | 2021年 / 15卷 / 09期
基金
瑞士国家科学基金会;
关键词
DATA ASSIMILATION; MODEL; PARAMETERIZATION; VALIDATION; SENTINEL-2; DEPLETION; PYRENEES; WEATHER; LAYERS; ALBEDO;
D O I
10.5194/tc-15-4607-2021
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
The snow cover spatial variability in mountainous terrain changes considerably over the course of a snow season. In this context, fractional snow-covered area (fSCA) is an essential model parameter characterizing how much ground surface in a grid cell is currently covered by snow. We present a seasonal fSCA algorithm using a recent scale-independent fSCA parameterization. For the seasonal implementation, we track snow depth (HS) and snow water equivalent (SWE) and account for several alternating accumulation-ablation phases. Besides tracking HS and SWE, the seasonal fSCA algorithm only requires subgrid terrain parameters from a fine-scale summer digital elevation model. We implemented the new algorithm in a multilayer energy balance snow cover model. To evaluate the spatiotemporal changes in modeled fSCA, we compiled three independent fSCA data sets derived from airborne-acquired fine-scale HS data and from satellite and terrestrial imagery. Overall, modeled daily 1 km fSCA values had normalized root mean square errors of 7 %, 12 % and 21 % for the three data sets, and some seasonal trends were identified. Comparing our algorithm performances to the performances of the CLM5.0 fSCA algorithm implemented in the multilayer snow cover model demonstrated that our full seasonal fSCA algorithm better represented seasonal trends. Overall, the results suggest that our seasonal fSCA algorithm can be applied in other geographic regions by any snow model application.
引用
收藏
页码:4607 / 4624
页数:18
相关论文
共 50 条