Universal scaling law in human behavioral organization

被引:111
|
作者
Nakamura, Toru
Kiyono, Ken
Yoshiuchi, Kazuhiro
Nakahara, Rika
Struzik, Zbigniew R.
Yamamoto, Yoshiharu
机构
[1] Osaka Univ, Ctr Adv Med Engn & Informat, Toyonaka, Osaka 5608531, Japan
[2] Nihon Univ, Coll Engn, Koriyama, Fukushima 9638642, Japan
[3] Univ Tokyo, Grad Sch Med, Dept Psychosomat Med, Bunkyo Ku, Tokyo 1138655, Japan
[4] Teikyo Univ, Mizonkuchi Hosp, Dept Psychiat, Takatsu Ku, Kawasaki, Kanagawa 2138507, Japan
[5] Univ Tokyo, Grad Sch Educ, Educ Psychol Lab, Bunkyo Ku, Tokyo 1130033, Japan
关键词
D O I
10.1103/PhysRevLett.99.138103
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We describe the nature of human behavioral organization, specifically how resting and active periods are interwoven throughout daily life. Active period durations with physical activity count successively above a predefined threshold, when rescaled with individual means, follow a universal stretched exponential (gamma-type) cumulative distribution with characteristic time, both in healthy individuals and in patients with major depressive disorder. On the other hand, resting period durations below the threshold for both groups obey a scale-free power-law cumulative distribution over two decades, with significantly lower scaling exponents in the patients. We thus find universal distribution laws governing human behavioral organization, with a parameter altered in depression.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Universal scaling law in frictional non-Brownian suspensions
    Blanc, Frederic
    D'Ambrosio, Enzo
    Lobry, Laurent
    Peters, Francois
    Lemaire, Elisabeth
    PHYSICAL REVIEW FLUIDS, 2018, 3 (11):
  • [32] Cope's Rule and the Universal Scaling Law of Ornament Complexity
    Raia, Pasquale
    Passaro, Federico
    Carotenuto, Francesco
    Maiorino, Leonardo
    Piras, Paolo
    Teresi, Luciano
    Meiri, Shai
    Itescu, Yuval
    Novosolov, Maria
    Antonio Baiano, Mattia
    Martnez, Ricard
    Fortelius, Mikael
    AMERICAN NATURALIST, 2015, 186 (02): : 165 - 175
  • [33] Energy loss as the origin of a universal scaling law of the elliptic flow
    Carlota Andrés
    Mikhail Braun
    Carlos Pajares
    The European Physical Journal A, 2017, 53
  • [34] Universal scaling law for atomic diffusion and viscosity in liquid metals
    Li, GX
    Liu, CS
    Zhu, ZG
    CHINESE PHYSICS LETTERS, 2004, 21 (12) : 2489 - 2492
  • [35] Universal Scaling Law in Long Gamma-Ray Bursts
    Tsutsui, Ryo
    Shigeyama, Toshikazu
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN, 2013, 65 (03)
  • [36] addendum: A universal scaling law for atomic diffusion in condensed matter
    M. Dzugutov
    Nature, 2001, 411 : 720 - 720
  • [37] Energy loss as the origin of a universal scaling law of the elliptic flow
    Andres, Carlota
    Braun, Mikhail
    Pajares, Carlos
    EUROPEAN PHYSICAL JOURNAL A, 2017, 53 (03):
  • [38] Test of the universal scaling law for square well liquid metals
    Mishra, Raj Kumar
    Lalneihpuii, R.
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2016, 444 : 11 - 15
  • [39] Universal scaling law of the power spectrum in the on-off intermittency
    Miyazaki, S
    Hata, H
    PHYSICAL REVIEW E, 1998, 58 (06): : 7172 - 7175
  • [40] The universal visitation law of human mobility
    Schlaepfer, Markus
    Dong, Lei
    O'Keeffe, Kevin
    Santi, Paolo
    Szell, Michael
    Salat, Hadrien
    Anklesaria, Samuel
    Vazifeh, Mohammad
    Ratti, Carlo
    West, Geoffrey B.
    NATURE, 2021, 593 (7860) : 522 - +