Universal scaling law in human behavioral organization

被引:111
|
作者
Nakamura, Toru
Kiyono, Ken
Yoshiuchi, Kazuhiro
Nakahara, Rika
Struzik, Zbigniew R.
Yamamoto, Yoshiharu
机构
[1] Osaka Univ, Ctr Adv Med Engn & Informat, Toyonaka, Osaka 5608531, Japan
[2] Nihon Univ, Coll Engn, Koriyama, Fukushima 9638642, Japan
[3] Univ Tokyo, Grad Sch Med, Dept Psychosomat Med, Bunkyo Ku, Tokyo 1138655, Japan
[4] Teikyo Univ, Mizonkuchi Hosp, Dept Psychiat, Takatsu Ku, Kawasaki, Kanagawa 2138507, Japan
[5] Univ Tokyo, Grad Sch Educ, Educ Psychol Lab, Bunkyo Ku, Tokyo 1130033, Japan
关键词
D O I
10.1103/PhysRevLett.99.138103
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We describe the nature of human behavioral organization, specifically how resting and active periods are interwoven throughout daily life. Active period durations with physical activity count successively above a predefined threshold, when rescaled with individual means, follow a universal stretched exponential (gamma-type) cumulative distribution with characteristic time, both in healthy individuals and in patients with major depressive disorder. On the other hand, resting period durations below the threshold for both groups obey a scale-free power-law cumulative distribution over two decades, with significantly lower scaling exponents in the patients. We thus find universal distribution laws governing human behavioral organization, with a parameter altered in depression.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Universal scaling law for human-to-human transmission diseases
    Cardoso, Ben-Hur Francisco
    Goncalves, Sebastian
    EPL, 2021, 133 (05)
  • [2] THE UNIVERSAL LAW OF ORGANIZATION
    Mihaescu, Constantin
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON BUSINESS EXCELLENCE, VOL 1, 2009, : 290 - 292
  • [3] Universal scaling law of glass rheology
    Song, Shuangxi
    Zhu, Fan
    Chen, Mingwei
    NATURE MATERIALS, 2022, 21 (04) : 404 - +
  • [4] Universal scaling law for chiral antiferromagnetism
    Xu, Shijie
    Dai, Bingqian
    Jiang, Yuhao
    Xiong, Danrong
    Cheng, Houyi
    Tai, Lixuan
    Tang, Meng
    Sun, Yadong
    He, Yu
    Yang, Baolin
    Peng, Yong
    Wang, Kang L.
    Zhao, Weisheng
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [5] A universal scaling law of mammalian touch
    Andrews, J. W.
    Adams, M. J.
    Montenegro-Johnson, T. D.
    SCIENCE ADVANCES, 2020, 6 (41)
  • [6] UNIVERSAL SCALING LAW FOR HADRONIC REACTIONS
    DIVAKARAN, PP
    PRAMANA, 1979, 13 (03) : 231 - 236
  • [7] Universal scaling law of glass rheology
    Shuangxi Song
    Fan Zhu
    Mingwei Chen
    Nature Materials, 2022, 21 : 404 - 409
  • [8] Universal Scaling Law for Jets of Collapsing Bubbles
    Obreschkow, D.
    Tinguely, M.
    Dorsaz, N.
    Kobel, P.
    de Bosset, A.
    Farhat, M.
    PHYSICAL REVIEW LETTERS, 2011, 107 (20)
  • [9] Universal Scaling Law for the Collapse of Viscous Nanopores
    Lu, Jiakai
    Yu, Jiayun
    Corvalan, Carlos M.
    LANGMUIR, 2015, 31 (31) : 8618 - 8622
  • [10] Universal scaling law of an origami paper spring
    Sun, Bo-Hua
    THEORETICAL AND APPLIED MECHANICS LETTERS, 2019, 9 (06) : 409 - 412