Effect of illumination on transport properties of the high mobility 2D hole gas in Si-SiGe heterostructures

被引:2
|
作者
Stadnik, VA [1 ]
Mitchell, EE
Clark, RG
Fang, FF
Wang, PJ
Meyerson, BS
机构
[1] Univ New S Wales, Natl Pulsed Magnet Lab, Sydney, NSW 2052, Australia
[2] IBM Corp, Thomas J Watson Res Ctr, Yorktown Heights, NY 10598 USA
来源
PHYSICA B | 1998年 / 246卷
关键词
Si-SiGe; 2D hole gas; transport; photoconductivity;
D O I
10.1016/S0921-4526(97)00941-1
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The effect of illumination on transport properties of the two-dimensional hole gas (2DHG) in Si-SiGe heterostructures is found to irreversibly alter its 2D transport properties, analogous to the persistent photoconductivity effect in GaAs-based devices. The relatively small change of the 2D hole concentration from 3.75 x 10(11) cm(-2) before illumination to 4.23 x 10(11) cm(-2) after illumination is accompanied by a significant increase in the in-plane effective mass from (0.23-0.25)m(e) to (0.32-0.33)m(e), and an even larger increase in the quantum lifetime. To evaluate the g-factor of this highly spin degenerate 2DHG we use highly sensitive magneto photoconductivity measurements to obtain g* = 9.1 +/- 0.1 after illumination, compared to an estimate for dark state g* = 8.5 +/- 0.5. (C) 1998 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:386 / 390
页数:5
相关论文
共 50 条
  • [31] 2D hole gas in GaAs/(AlGa)As heterostructures investigated by photoreflectance spectroscopy
    Sitarek, P
    Misiewicz, J
    Hansen, OP
    SOLID STATE CRYSTALS IN OPTOELECTRONICS AND SEMICONDUCTOR TECHNOLOGY, 1997, 3179 : 129 - 132
  • [32] Wurtzite phonons and the mobility of a GaN/AlN 2D hole gas
    Bader, Samuel James
    Chaudhuri, Reet
    Schubert, Martin F.
    Then, Han Wui
    Xing, Huili Grace
    Jena, Debdeep
    APPLIED PHYSICS LETTERS, 2019, 114 (25)
  • [33] The Kondo effect in 2D electron gas of magnetically undoped AlGaN/GaN high-electron-mobility transistor heterostructures
    Chumakov, N. K.
    Chernykh, I. A.
    Davydov, A. B.
    Ezubchenko, I. S.
    Grishchenko, Yu V.
    Lev, L. L.
    Maiboroda, I. O.
    Strocov, V. N.
    Valeyev, V. G.
    Zanaveskin, M. L.
    VII EURO-ASIAN SYMPOSIUM TRENDS IN MAGNETISM, 2019, 1389
  • [34] Formation and electronic transport of 2D electron and hole gases in AlGaN/GaN heterostructures
    Link, A
    Ambacher, O
    Smorchkova, IP
    Mishra, UK
    Speck, JS
    Stutzmann, M
    SILICON CARBIDE AND RELATED MATERIALS, ECSCRM2000, 2001, 353-356 : 787 - 790
  • [35] Formation and electronic transport of 2D electron and hole gases in AlGaN/GaN heterostructures
    Link, A.
    Ambacher, O.
    Smorchkova, I.P.
    Mishra, U.K.
    Speck, J.S.
    Stutzmann, M.
    Materials Science Forum, 2001, 353-356 : 787 - 790
  • [36] Interactions in high-mobility 2D electron and hole systems
    Savchenko, AK
    Proskuryakov, YY
    Safonov, SS
    Li, L
    Pepper, M
    Simmons, MY
    Ritchie, DA
    Linfield, EH
    Kvon, ZD
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2004, 22 (1-3): : 218 - 223
  • [37] 2D Monte Carlo simulation of hole and electron transport in strained Si
    Formicone, GF
    Vasileska, D
    Ferry, DK
    VLSI DESIGN, 1998, 6 (1-4) : 167 - 171
  • [38] METAL-INSULATOR-TRANSITION IN A 2-DIMENSIONAL HOLE GAS IN SI/SIGE HETEROSTRUCTURES - QUANTUM OR CLASSICAL PERCOLATION
    DOLGOPOLOV, VT
    SHASHKIN, AA
    KRAVCHENKO, GV
    EMELEUS, CJ
    WHALL, TE
    JETP LETTERS, 1995, 62 (02) : 168 - 173
  • [39] Quantum Coherence and the Kondo Effect in the 2D Electron Gas of Magnetically Undoped AlGaN/GaN High-Electron-Mobility Transistor Heterostructures
    N. K. Chumakov
    I. A. Chernykh
    A. B. Davydov
    I. S. Ezubchenko
    Yu. V. Grishchenko
    L. L. Lev
    I. O. Maiboroda
    L. A. Morgun
    V. N. Strocov
    V. G. Valeyev
    M. L. Zanaveskin
    Semiconductors, 2020, 54 : 1150 - 1154
  • [40] Quantum Coherence and the Kondo Effect in the 2D Electron Gas of Magnetically Undoped AlGaN/GaN High-Electron-Mobility Transistor Heterostructures
    Chumakov, N. K.
    Chernykh, I. A.
    Davydov, A. B.
    Ezubchenko, I. S.
    Grishchenko, Yu. V.
    Lev, L. L.
    Maiboroda, I. O.
    Morgun, L. A.
    Strocov, V. N.
    Valeyev, V. G.
    Zanaveskin, M. L.
    SEMICONDUCTORS, 2020, 54 (09) : 1150 - 1154