A global 3-D electron density reconstruction model based on radio occultation data and neural networks

被引:10
|
作者
Habarulema, John Bosco [1 ,2 ]
Okoh, Daniel [3 ,4 ]
Buresova, Dalia [5 ]
Rabiu, Babatunde [3 ,4 ]
Tshisaphungo, Mpho [1 ]
Kosch, Michael [1 ]
Haggstrom, Ingemar [6 ]
Erickson, Philip J. [7 ]
Milla, Marco A. [8 ]
机构
[1] South African Natl Space Agcy SANSA, POB 32, ZA-7200 Hermanus, South Africa
[2] Rhodes Univ, Dept Phys & Elect, ZA-6140 Makhanda, South Africa
[3] Natl Space Res & Dev Agcy, Ctr Atmospher Res, Anyigba, Nigeria
[4] African Univ Sci & Technol, Inst Space Sci & Engn, Abuja, Nigeria
[5] Inst Atmospher Phys CAS, Bocni II 1401, Prague 14131 4, Czech Republic
[6] EISCAT Sci Assoc, Box 812, SE-98128 Kiruna, Sweden
[7] MIT, Haystack Observ, Westford, MA 01886 USA
[8] Inst Geofis Peru, Radio Observ Jicamarca, Lima, Peru
基金
新加坡国家研究基金会; 美国国家科学基金会; 英国科研创新办公室;
关键词
3-dimensional electron density model; Radio occultation data; Artificial neural networks; IRI; 2016; model; Incoherent scatter radar and ionosonde observations; IONOSPHERIC MODEL; PROFILES;
D O I
10.1016/j.jastp.2021.105702
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The accurate representation of the ionospheric electron density in 3-dimensions is a challenging problem because of the nature of horizontal and vertical structures on both small and large scales. This paper presents the development of a global three-dimensional (3-D) electron density reconstruction based on radio occultation data during 2006-2019 and neural networks. We demonstrate that the developed model based on COSMIC dataset only is capable of reproducing different ionospheric features when compared to independent datasets from ionosondes and incoherent scatter radars (ISR) in low, middle and high latitude regions. Following some existing modelling efforts based on similar or related datasets and technique we divided the problem into fine resolution grid cells of 5 degrees x15 degrees (geographic latitudes/longitudes) followed by development of the neural network subroutine per cell and later combining all the 864 sub-models to compile one global model. This approach has been demonstrated to be appropriate in enabling neural networks to learn, reproduce and generalise local and global behaviour of the ionospheric electron density. Based on ISR data, the 3D model improves maximum electron density of the F2 layer (NmF2) prediction by 10%-20% compared to IRI 2016 model during quiet conditions. For estimation of ionosonde ordinary critical frequency of the F2 layer (foF2) in 2009 at 1200 UT (universal time), the developed 3-D model gives average root mean square error (RMSE) values of 0.83 MHz, 1.06 MHz and 1.16 MHz compared to the IRI 2016 values of 0.92 MHz, 1.09 MHz and 1.01 MHz over the Africa-European, American and Asian sectors respectively making their performances statistically comparable. Compared to ionosonde data, the IRI 2016 model consistently shows a better performance for the hmF2 modelling results in almost all sectors during the investigated periods.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Tomographic Reconstruction of the Low-Latitude Nighttime Electron Density Using FORMOSAT-3/COMSIC Radio Occultation and UV Photometer Data
    Dymond, Kenneth F.
    Budzien, Scott A.
    Chua, Damien H.
    Coker, Clayton
    Liu, Jann-Yenq
    TERRESTRIAL ATMOSPHERIC AND OCEANIC SCIENCES, 2009, 20 (01): : 215 - 226
  • [22] Global climate monitoring based on CHAMP/GPS radio occultation data
    Foelsche, U
    Kirchengast, G
    Steiner, AK
    FIRST CHAMP MISSION RESULTS FOR GRAVITY, MAGNETIC AND ATMOSPHERIC STUDIES, 2003, : 397 - 407
  • [23] Electron density profile reconstruction with convolutional neural networks
    Lan, Ting
    Liu, Haiqing
    Ren, Qilong
    Zhu, Xiang
    Mao, Wenzhe
    Yuan, Yi
    Wang, Yunfei
    PLASMA PHYSICS AND CONTROLLED FUSION, 2022, 64 (12)
  • [24] Multiantenna-Based Data Filling Method for Retrieving Electron Density Profiles From GNSS Radio Occultation Data
    Chang, Hyeyeon
    Lee, Woo Kyoung
    Kil, Hyosub
    Yoon, Hyosang
    Lee, Jiyun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [25] Linear Vary-Chap Topside Electron Density Model with Topside Sounder and Radio-Occultation Data
    Fabricio dos Santos Prol
    David R. Themens
    Manuel Hernández-Pajares
    Paulo de Oliveira Camargo
    Marcio Tadeu de Assis Honorato Muella
    Surveys in Geophysics, 2019, 40 : 277 - 293
  • [26] Neural computation approach for developing a 3-D shape reconstruction model
    Cho, SY
    Chow, TWS
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2001, 12 (05): : 1204 - 1214
  • [27] Effect of spatial irregularities on the reconstruction of the ionospheric electron density profile on the basic of radio occultation observations
    Radievskii, A. V.
    Zakharenkova, I. E.
    Shagimuratov, I. I.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B, 2011, 5 (03) : 402 - 405
  • [28] Effect of spatial irregularities on the reconstruction of the ionospheric electron density profile on the basic of radio occultation observations
    A. V. Radievskii
    I. E. Zakharenkova
    I. I. Shagimuratov
    Russian Journal of Physical Chemistry B, 2011, 5 : 402 - 405
  • [29] Linear Vary-Chap Topside Electron Density Model with Topside Sounder and Radio-Occultation Data
    Prol, Fabricio dos Santos
    Themens, David R.
    Hernandez-Pajares, Manuel
    Camargo, Paulo de Oliveira
    de Assis Honorato Muella, Marcio Tadeu
    SURVEYS IN GEOPHYSICS, 2019, 40 (02) : 277 - 293
  • [30] Validation of FORMOSAT-3/COSMIC radio occultation electron density profiles by incoherent scatter radar data
    Cherniak, Iu. V.
    Zakharenkova, I. E.
    ADVANCES IN SPACE RESEARCH, 2014, 53 (09) : 1304 - 1312