Time-varying Bose-Einstein condensates

被引:7
|
作者
Van Gorder, Robert A. [1 ]
机构
[1] Univ Otago, Dept Math & Stat, POB 56, Dunedin 9054, New Zealand
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2021年 / 477卷 / 2254期
关键词
Bose-Einstein condensation; Gross-Pitaevskii equation; perturbation theory; variational approximation; non-autonomous dynamical systems; GROSS-PITAEVSKII EQUATION; NONLINEAR SCHRODINGER-EQUATION; GROUND-STATE SOLUTION; NONAUTONOMOUS SOLITONS; NUMERICAL-SOLUTION; DYNAMICS; GAS; VORTEX; DECAY;
D O I
10.1098/rspa.2021.0443
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Bose-Einstein condensates (BECs), a state of matter formed when a low-density gas of bosons is cooled to near absolute zero, continue to motivate novel work in theoretical and experimental physics. Although BECs are most commonly studied in stationary ground states, time-varying BECs arise when some aspect of the physics governing the condensate varies as a function of time. We study the evolution of time-varying BECs under non-autonomous Gross-Pitaevskii equations (GPEs) through a mix of theory and numerical experiments. We separately derive a perturbation theory (in the small-parameter limit) and a variational approximation for non-autonomous GPEs on generic bounded space domains. We then explore various routes to obtain time-varying BECs, starting with the more standard techniques of varying the potential, scattering length, or dispersion, and then moving on to more advanced control mechanisms such as moving the external potential well over time to move or even split the BEC cloud. We also describe how to modify a BEC cloud through evolution of the size or curvature of the space domain. Our results highlight a variety of interesting theoretical routes for studying and controlling time-varying BECs, lending a stronger theoretical formulation for existing experiments and suggesting new directions for future investigation.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] Bose-Einstein condensates in optical lattices
    Wasilewski, W
    Trippenbach, M
    Rzazewski, K
    ACTA PHYSICA POLONICA A, 2002, 101 (01) : 47 - 60
  • [42] Atom optics with Bose-Einstein condensates
    Burger, S
    Bongs, K
    Sengstock, K
    Ertmer, W
    BOSE-EINSTEIN CONDENSATES AND ATOM LASERS, 2000, : 97 - 115
  • [43] Oscillons in coupled Bose-Einstein condensates
    Su, Shih-Wei
    Gou, Shih-Chuan
    Liu, I-Kang
    Bradley, Ashton S.
    Fialko, Oleksandr
    Brand, Joachim
    PHYSICAL REVIEW A, 2015, 91 (02)
  • [44] Solitonic vortices in Bose-Einstein condensates
    Tylutki, M.
    Donadello, S.
    Serafini, S.
    Pitaevskii, L. P.
    Dalfovo, F.
    Lamporesi, G.
    Ferrari, G.
    European Physical Journal-Special Topics, 2015, 224 (03): : 577 - 583
  • [45] Entanglement concentration in Bose-Einstein condensates
    Dunningham, J.A.
    Bose, S.
    Henderson, L.
    Vedral, V.
    Burnett, K.
    Physical Review A - Atomic, Molecular, and Optical Physics, 2002, 65 (6 A): : 643021 - 643024
  • [46] Phase standard for Bose-Einstein condensates
    Dunningham, JA
    Burnett, K
    PHYSICAL REVIEW LETTERS, 1999, 82 (19) : 3729 - 3733
  • [47] Wave turbulence in Bose-Einstein condensates
    Lvov, Y
    Nazarenko, S
    West, R
    PHYSICA D-NONLINEAR PHENOMENA, 2003, 184 (1-4) : 333 - 351
  • [48] Bose-Einstein condensates in optical potentials
    L. Fallani
    C. Fort
    M. Inguscio
    La Rivista del Nuovo Cimento, 2005, 28 : 1 - 57
  • [49] Chaos tunneling of Bose-Einstein condensates
    School of Science, University of Jinan, Jinan 250022, China
    Wuli Xuebao, 2008, 12 (7438-7446):
  • [50] Fragility of fragmentation in Bose-Einstein condensates
    Jackson, A. D.
    Kavoulakis, G. M.
    Magiropoulos, M.
    PHYSICAL REVIEW A, 2008, 78 (06):