Isochronal synchronization of time delay and delay-coupled chaotic systems

被引:16
|
作者
Grzybowski, J. M. V. [1 ]
Macau, E. E. N. [2 ]
Yoneyama, T. [1 ]
机构
[1] ITA, BR-12228900 Sao Jose Dos Campos, SP, Brazil
[2] INPE, BR-12227010 Sao Jose Dos Campos, Brazil
基金
巴西圣保罗研究基金会;
关键词
COMPLEX NETWORKS; STABILITY; CRITERIA; BEHAVIOR;
D O I
10.1088/1751-8113/44/17/175103
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper studies the problem of isochronal synchronization of time-delay chaotic systems featuring also coupling delay. Based on the Lyapunov-Krasovskii stability theory, sufficient conditions are derived for the stability of isochronal synchronization between a pair of identical chaotic systems. Such criteria permit the proper design of stable proportional linear feedback controller, more specifically, the design of adequate proportional feedback gain matrices. The proposed criteria are suited to systems with (i) intrinsic delay, (ii) coupling delay or (iii) both. Numerical simulations of the synchronization of delay-coupled systems are presented as examples of the application of the criteria.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Robust partial synchronization of delay-coupled networks
    Su, Libo
    Wei, Yanling
    Michiels, Wim
    Steur, Erik
    Nijmeijer, Henk
    CHAOS, 2020, 30 (01)
  • [22] Anticipated and zero-lag synchronization in motifs of delay-coupled systems
    Mirasso, Claudio R.
    Carelli, Pedro V.
    Pereira, Tiago
    Matias, Fernanda S.
    Copelli, Mauro
    CHAOS, 2017, 27 (11)
  • [23] A constructional method for generalized synchronization of coupled time-delay chaotic systems
    Xiang, Hui-fen
    Li, Gao-ping
    CHAOS SOLITONS & FRACTALS, 2009, 41 (04) : 1849 - 1853
  • [24] Mismatch and synchronization: Influence of asymmetries in systems of two delay-coupled lasers
    Hicke, K.
    D'Huys, O.
    Flunkert, V.
    Schoell, E.
    Danckaert, J.
    Fischer, I.
    PHYSICAL REVIEW E, 2011, 83 (05)
  • [25] The Lyapunov-Krasovskii theorem and a sufficient criterion for local stability of isochronal synchronization in networks of delay-coupled oscillators
    Grzybowski, J. M. V.
    Macau, E. E. N.
    Yoneyama, T.
    PHYSICA D-NONLINEAR PHENOMENA, 2017, 346 : 28 - 36
  • [26] Synchronization in ensembles of delay-coupled nonidentical neuronlike oscillators
    D. D. Kulminskiy
    V. I. Ponomarenko
    M. D. Prokhorov
    A. E. Hramov
    Nonlinear Dynamics, 2019, 98 : 735 - 748
  • [27] Amplitude and phase effects on the synchronization of delay-coupled oscillators
    D'Huys, O.
    Vicente, R.
    Danckaert, J.
    Fischer, I.
    CHAOS, 2010, 20 (04)
  • [28] Quasiperiodic synchronization for two delay-coupled semiconductor lasers
    Hohl, A
    Gavrielides, A
    Erneux, T
    Kovanis, V
    PHYSICAL REVIEW A, 1999, 59 (05): : 3941 - 3949
  • [29] Synchronization properties of three delay-coupled semiconductor lasers
    Vicente, Raul
    Fischer, Ingo
    Mirasso, Claudio R.
    PHYSICAL REVIEW E, 2008, 78 (06):
  • [30] Synchronization in ensembles of delay-coupled nonidentical neuronlike oscillators
    Kulminskiy, D. D.
    Ponomarenko, V. I.
    Prokhorov, M. D.
    Hramov, A. E.
    NONLINEAR DYNAMICS, 2019, 98 (01) : 735 - 748