Inverse numerical range and Abel-Jacobi map of Hermitian determinantal representation

被引:0
|
作者
Chien, Mao-Ting [1 ]
Nakazato, Hiroshi [2 ]
机构
[1] Soochow Univ, Dept Math, Taipei 11102, Taiwan
[2] Hirosaki Univ, Fac Sci & Technol, Hirosaki, Aomori 0368561, Japan
关键词
Inverse numerical range; Hermitian matrices; Elliptic curve; Abel-Jacobi map;
D O I
10.1016/j.laa.2021.10.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be an n x n matrix. The Hermitian parts of A are denoted by R(A) = (A + A*)/2and J(A) = (A - A*)/(2i). The kernel vectors of the linear pencil xR(A) + yJ(A) + zI(n) play a role for the inverse numerical range of A. This kernel vector technique was applied to perform the inverse numerical range of 3 x3 symmetric matrices. In this paper, we follow the kernel vector method and apply the Abel theorem for 3 x3 Hermitian matrices. We present the elliptic curve group structure of the cubic curve associated to the ternary form of the matrix, and characterize the Abel type additive structure of the divisors of the cubic curve. A numerical example is given to illustrate the characterization related to the Riemann theta representation. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:227 / 243
页数:17
相关论文
共 50 条
  • [1] Inverse numerical range and Abel-Jacobi map of Hermitian determinantal representation
    Chien, Mao-Ting
    Nakazato, Hiroshi
    Linear Algebra and Its Applications, 2022, 633 : 227 - 243
  • [2] The morphic abel-jacobi map
    Walker, Mark E.
    COMPOSITIO MATHEMATICA, 2007, 143 (04) : 909 - 944
  • [3] An extended Abel-Jacobi map
    Braden, H. W.
    Fedorov, Yu. N.
    JOURNAL OF GEOMETRY AND PHYSICS, 2008, 58 (10) : 1346 - 1354
  • [4] Vortices and the Abel-Jacobi map
    Rink, Norman A.
    JOURNAL OF GEOMETRY AND PHYSICS, 2014, 76 : 242 - 255
  • [5] The Abel-Jacobi map for complete intersections
    Nagel, J
    INDAGATIONES MATHEMATICAE-NEW SERIES, 1997, 8 (01): : 95 - 113
  • [6] THE BLOCH IMAGE OF THE ABEL-JACOBI MAP
    SUWA, N
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1988, 116 (01): : 69 - 101
  • [7] The Walker Abel-Jacobi map descends
    Achter, Jeffrey D.
    Casalaina-Martin, Sebastian
    Vial, Charles
    MATHEMATISCHE ZEITSCHRIFT, 2022, 300 (02) : 1799 - 1817
  • [8] A GENERALIZATION OF ABEL'S THEOREM AND THE ABEL-JACOBI MAP
    Dupont, Johan L.
    Kamber, Franz W.
    ILLINOIS JOURNAL OF MATHEMATICS, 2011, 55 (02) : 641 - 673
  • [9] Inverse numerical range and determinantal representation
    Chien, Mao-Ting
    Nakazato, Hiroshi
    Yeh, Lina
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 558 : 79 - 100
  • [10] GENERALIZED TONNETZ AND DISCRETE ABEL-JACOBI MAP
    Jevtic, Filip D.
    Zivaljevic, Rade T.
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2021, 57 (02) : 547 - 567