An extended Abel-Jacobi map

被引:6
|
作者
Braden, H. W. [2 ]
Fedorov, Yu. N. [1 ]
机构
[1] Univ Politecn Cataluna, Dept Math 1, E-08028 Barcelona, Catalunya, Spain
[2] Univ Edinburgh, Sch Math, Edinburgh, Midlothian, Scotland
关键词
Generalized Abel map; Theta functions; Integrability; Monopoles;
D O I
10.1016/j.geomphys.2008.05.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We solve the problem of inversion of an extended Abel-Jacobi map integral(P1)(P0) omega + ... + integral(Pg+n-1)(P0) omega = Z, integral(P1)(P0) Omega(j1) + ... + integral(Pg+n-1)(P0) Omega(j1) = Z(j), j = 2.....n. where Omega(j1), are (normalized) Abelian differentials of the third kind. In contrast to the extensions already studied, this one contains meromorphic differentials having a common pole Q(1). This inversion problem arises in algebraic geometric description of monopoles, as well as in the linearization of integrable systems on finite-dimensional unreduced coadjoint orbits on loop algebras. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1346 / 1354
页数:9
相关论文
共 50 条