WorkerFirst: Worker-Centric Model Selection for Federated Learning in Mobile Edge Computing

被引:0
|
作者
Huang, Huawei [1 ]
Yang, Yang [1 ]
机构
[1] Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou, Peoples R China
关键词
WIRELESS; OPPORTUNITIES; OPTIMIZATION;
D O I
10.1109/iccc49849.2020.9238867
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Federated Learning (FL) is viewed as a promising manner of distributed machine learning, because it leverages the rich local datasets of various participants while preserving their privacy. Particularly under the fifth-generation communications (5G) networks, FL shows its overwhelming advantages in the context of mobile edge computing (MEC). However, from the participant's viewpoint, a puzzle is how to guarantee the tradeoff between the profit brought by participating in FL training and the restriction of its battery capacity. Because communicating with the FL server and training an FL model locally are energy-hungry. To address such a puzzle, different from existing studies, we particularly formulate the model-selection problem from the standpoint of mobile participants (i.e., workers). We then exploit the framework of deep reinforcement learning (DRL) to reformulate a joint optimization for all FL participants, by considering the energy consumption, training timespan, and communication overheads of workers, simultaneously. To address the proposed worker-centric selection problem, we devised a double deep Q-learning Network (DDQN) algorithm and a deep Q-Learning (DQL) algorithm to strive for the adaptive model-selection decisions of each energy-sensitive participant under a varying MEC environment. The simulation results show that the proposed DDQN and DQL algorithms can quickly learn a good policy without knowing any prior knowledge of network conditions, and outperform other baselines.
引用
收藏
页码:1039 / 1044
页数:6
相关论文
共 50 条
  • [31] Accelerating Federated Learning With Data and Model Parallelism in Edge Computing
    Liao, Yunming
    Xu, Yang
    Xu, Hongli
    Yao, Zhiwei
    Wang, Lun
    Qiao, Chunming
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2024, 32 (01) : 904 - 918
  • [32] Hybrid Learning: When Centralized Learning Meets Federated Learning in the Mobile Edge Computing Systems
    Feng, Chenyuan
    Yang, Howard H.
    Wang, Siye
    Zhao, Zhongyuan
    Quek, Tony Q. S.
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2023, 71 (12) : 7008 - 7022
  • [33] Federated Learning for Edge Computing: A Survey
    Brecko, Alexander
    Kajati, Erik
    Koziorek, Jiri
    Zolotova, Iveta
    APPLIED SCIENCES-BASEL, 2022, 12 (18):
  • [34] Data-Centric Client Selection for Federated Learning Over Distributed Edge Networks
    Saha, Rituparna
    Misra, Sudip
    Chakraborty, Aishwariya
    Chatterjee, Chandranath
    Deb, Pallav Kumar
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2023, 34 (02) : 675 - 686
  • [35] Client Selection for Federated Learning in Vehicular Edge Computing: A Deep Reinforcement Learning Approach
    Moon, Sungwon
    Lim, Yujin
    IEEE ACCESS, 2024, 12 : 131337 - 131348
  • [36] Optimal Privacy Preserving in Wireless Federated Learning over Mobile Edge Computing
    Nguyen, Hai M.
    Chu, Nam H.
    Nguyen, Diep N.
    Dinh Thai Hoang
    Minh Hoang Ha
    Dutkiewicz, Eryk
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 2000 - 2006
  • [37] Hierarchical Personalized Federated Learning Over Massive Mobile Edge Computing Networks
    You, Chaoqun
    Guo, Kun
    Yang, Howard H.
    Quek, Tony Q. S.
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (11) : 8141 - 8157
  • [38] Task offloading mechanism based on federated reinforcement learning in mobile edge computing
    Li, Jie
    Yang, Zhiping
    Wang, Xingwei
    Xia, Yichao
    Ni, Shijian
    DIGITAL COMMUNICATIONS AND NETWORKS, 2023, 9 (02) : 492 - 504
  • [39] Federated Learning Meets Edge Computing: A Hierarchical Aggregation Mechanism for Mobile Devices
    Chen, Jiewei
    Li, Wenjing
    Yang, Guoming
    Qiu, Xuesong
    Guo, Shaoyong
    WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS, PT III, 2022, 13473 : 456 - 467
  • [40] Resource Optimization for Blockchain-Based Federated Learning in Mobile Edge Computing
    Wang, Zhilin
    Hu, Qin
    Xiong, Zehui
    Liu, Yuan
    Niyato, Dusit
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (09): : 15166 - 15178