Large deviations for (1+1)-dimensional stochastic geometric wave equation

被引:4
|
作者
Brzezniak, Zdzislaw [1 ]
Goldys, Ben [2 ]
Ondrejat, Martin [3 ]
Rana, Nimit [4 ]
机构
[1] Univ York, Dept Mat, York YO10 5DD, N Yorkshire, England
[2] Univ Sydney, Sch Math & Stat, Dept Math, Carslaw Bldg, Sydney, NSW 2006, Australia
[3] Czech Acad Sci, Inst Informat Theory & Automat, Pod Vodarenskou Vezi 4, Prague 18200 8, Czech Republic
[4] Univ Bielefeld, Fak Math, Postfach 10 01 31, D-33501 Bielefeld, Germany
基金
澳大利亚研究理事会;
关键词
Large deviations; Stochastic geometric wave equation; Riemannian manifold; Infinite dimensional Brownian motion; EVOLUTION-EQUATIONS; WEAK SOLUTIONS; VALUES; BLOWUP;
D O I
10.1016/j.jde.2022.04.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider stochastic wave map equation on real line with solutions taking values in a d-dimensional compact Riemannian manifold. We show first that this equation has unique, global, strong in PDE sense, solution in local Sobolev spaces. The main result of the paper is a proof of the Large Deviations Principle for solutions in the case of vanishing noise.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 69
页数:69
相关论文
共 50 条
  • [21] Conservation laws of a nonlinear (1+1) wave equation
    Johnpillai, A. G.
    Kara, A. H.
    Mahomed, F. M.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (04) : 2237 - 2242
  • [22] Soliton solutions for a generalized (1+1)-dimensional equation
    Wang, Dan
    Zhang, Jin-Yu
    Li, Chun-Hui
    Wang, Xiao-Li
    2ND INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, MODELLING, AND INTELLIGENT COMPUTING (CAMMIC 2022), 2022, 12259
  • [23] The classification of the single traveling wave solutions to (1+1) dimensional Gardner equation with variable coefficients
    Cao, Damin
    Du, Lijuan
    ADVANCES IN DIFFERENCE EQUATIONS, 2019,
  • [24] Rational Form Solitary Wave Solutions and Doubly Periodic Wave Solutions to (1+1)-Dimensional Dispersive Long Wave Equation
    WANG Qi
    CHEN Yong
    ZHANG Hong-Qing Department of Applied Mathematics
    CommunicationsinTheoreticalPhysics, 2005, 43 (06) : 975 - 982
  • [25] Rational form solitary wave solutions and doubly periodic wave solutions to (1+1)-dimensional dispersive long wave equation
    Wang, Q
    Chen, Y
    Zhang, HQ
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2005, 43 (06) : 975 - 982
  • [26] Statistical mechanics of the wave maps equation in dimension 1+1
    Brzezniak, Zdzislaw
    Jendrej, Jacek
    JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 288 (01)
  • [27] Large deviations for nonlinear stochastic Schrodinger equation
    Fatheddin, Parisa
    Qiu, Zhaoyang
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2021, 39 (03) : 456 - 482
  • [28] New solitary and optical wave structures to the (1+1)-dimensional combined KdV-mKdV equation
    Bulut, Hasan
    Sulaiman, Tukur A.
    Baskonus, Haci Mehmet
    Sandulyak, Anna A.
    OPTIK, 2017, 135 : 327 - 336
  • [29] Fission and fusion of solitons for the (1+1)-dimensional Kupershmidt equation
    Ying, JP
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2001, 35 (04) : 405 - 408
  • [30] Large deviations for stochastic pantograph integrodifferential equation
    Ranjani, A. Siva
    Suvinthra, M.
    Balachandran, K.
    FILOMAT, 2023, 37 (20) : 6751 - 6766