Large deviations for (1+1)-dimensional stochastic geometric wave equation

被引:4
|
作者
Brzezniak, Zdzislaw [1 ]
Goldys, Ben [2 ]
Ondrejat, Martin [3 ]
Rana, Nimit [4 ]
机构
[1] Univ York, Dept Mat, York YO10 5DD, N Yorkshire, England
[2] Univ Sydney, Sch Math & Stat, Dept Math, Carslaw Bldg, Sydney, NSW 2006, Australia
[3] Czech Acad Sci, Inst Informat Theory & Automat, Pod Vodarenskou Vezi 4, Prague 18200 8, Czech Republic
[4] Univ Bielefeld, Fak Math, Postfach 10 01 31, D-33501 Bielefeld, Germany
基金
澳大利亚研究理事会;
关键词
Large deviations; Stochastic geometric wave equation; Riemannian manifold; Infinite dimensional Brownian motion; EVOLUTION-EQUATIONS; WEAK SOLUTIONS; VALUES; BLOWUP;
D O I
10.1016/j.jde.2022.04.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider stochastic wave map equation on real line with solutions taking values in a d-dimensional compact Riemannian manifold. We show first that this equation has unique, global, strong in PDE sense, solution in local Sobolev spaces. The main result of the paper is a proof of the Large Deviations Principle for solutions in the case of vanishing noise.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 69
页数:69
相关论文
共 50 条