Worldtube conservation laws for the null-timelike evolution problem

被引:6
|
作者
Winicour, Jeffrey [1 ,2 ]
机构
[1] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA
[2] Albert Einstein Inst, Max Planck Inst Gravitat Phys, D-14476 Golm, Germany
关键词
Conservation laws; Gravitational waves; Boundary conditions; BOUNDARY VALUE-PROBLEM; GENERAL RELATIVITY; EINSTEIN EQUATIONS; NUMERICAL RELATIVITY; GRAVITATIONAL WAVES; CAUCHY-PROBLEM; MOTION;
D O I
10.1007/s10714-011-1241-3
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
I treat the worldtube constraints which arise in the null-timelike initial-boundary value problem for the Bondi-Sachs formulation of Einstein's equations. Boundary data on a worldtube and initial data on an outgoing null hypersurface determine the exterior spacetime by integration along the outgoing null geodsics. The worldtube constraints are a set of conservation laws which impose conditions on the integration constants. I show how these constraints lead to a well-posed initial value problem governing the extrinsic curvature of the worldtube, whose components are related to the integration constants. Possible applications to gravitational waveform extraction and to the well-posedness of the null-timelike initial-boundary value problem are discussed.
引用
下载
收藏
页码:3269 / 3288
页数:20
相关论文
共 50 条
  • [41] The Cauchy problem for hyperbolic conservation laws with three equations
    Lu, YG
    Klingenberg, C
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 202 (01) : 206 - 216
  • [42] Analytic regularization of an inverse problem for a system of conservation laws
    Alvarez, Amaury C.
    Hime, Gustavo
    Marehesin, Dan
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS AND APPLICATIONS, PART 2, 2009, 67 : 347 - 357
  • [43] Kinetic approximation of a boundary value problem for conservation laws
    Aregba-Driollet, D
    Milisic, V
    NUMERISCHE MATHEMATIK, 2004, 97 (04) : 595 - 633
  • [44] A general result on the approximation of local conservation laws by nonlocal conservation laws: The singular limit problem for exponential kernels
    Coclite G.M.
    Coron J.-M.
    De Nitti N.
    Keimer A.
    Pflug L.
    Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire, 2023, 40 (05): : 1205 - 1223
  • [45] Evolution equations having conservation laws with flux characteristics
    van Brunt, B.
    Vlieg-Hulstman, M.
    ANZIAM JOURNAL, 2007, 49 : 39 - 52
  • [46] An alternating evolution approximation to systems of hyperbolic conservation laws
    Liu, Hailiang
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2008, 5 (02) : 421 - 447
  • [47] Lagrangian Approach to Evolution Equations: Symmetries and Conservation Laws
    N. H. Ibragimov
    T. Kolsrud
    Nonlinear Dynamics, 2004, 36 : 29 - 40
  • [48] A Procedure to Construct Conservation Laws of Nonlinear Evolution Equations
    Yasar, Emrullah
    San, Sait
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2016, 71 (05): : 475 - 480
  • [49] Non-Abelian Evolution Systems with Conservation Laws
    V. E. Adler
    V. V. Sokolov
    Mathematical Physics, Analysis and Geometry, 2021, 24
  • [50] CONSERVATION-LAWS FOR NONLINEAR EVOLUTION-EQUATIONS
    CAVALCANTE, JA
    TENENBLAT, K
    JOURNAL OF MATHEMATICAL PHYSICS, 1988, 29 (04) : 1044 - 1049