Controlled Fusion Frames in Hilbert Spaces and Their Dual

被引:0
|
作者
Shakoory, H. [1 ]
Ahmadi, R. [2 ]
Behzadi, N. [3 ]
Nami, S. [4 ]
机构
[1] Islamic Azad Univ, Shabestar Branch, Dept Math, Math, Tehran, Iran
[2] Univ Tabriz, Math, Res Inst Fundamental Sci, Tabriz, Iran
[3] Univ Tabriz, Phys, Res Inst Fundamental Sci, Tabriz, Iran
[4] Univ Tabriz, Phys, Fac Phys, Tabriz, Iran
关键词
Frame; Controlled Frame; Hilbert Space; Controlled Fusion Frame;
D O I
10.30495/JME.2022.1476
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Controlled frames in Hilbert spaces have been introduced by Balazs, Antoine and Grybos to improve the numerical output of in relation to algorithms for inverting the frame operator. In this paper, we introduce the notion of controlled fusion frames on Hilbert spaces. It is shown that controlled fusion frames are a generalization of fusion frames giving a generalized way to obtain numerical advantage in the sense of preconditioning to check the fusion frame condition. For this end, we introduce the notion of Q-duality for Controlled fusion frames. Also, we survey the robustness of controlled fusion frames under some perturbations.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] On the duality of c-fusion frames in Hilbert spaces
    A. Rahimi
    Z. Darvishi
    B. Daraby
    Analysis and Mathematical Physics, 2017, 7 : 335 - 348
  • [32] K-g-fusion frames in Hilbert spaces
    Huang, Yongdong
    Yang, Yuanyuan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [33] INEQUALITIES FOR FUSION FRAMES IN HILBERT SPACES WITH NEW STRUCTURES
    Xiang, Zhong-Qi
    Lin, Chun-Xia
    Xiao, Xiang-Chun
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2024, 27 (03): : 745 - 758
  • [34] WEAVING K-FUSION FRAMES IN HILBERT SPACES
    Liu, Hanbing
    Huang, Yongdong
    Li, Chongjun
    MATHEMATICAL FOUNDATIONS OF COMPUTING, 2020, 3 (02): : 101 - 116
  • [35] K-g-fusion frames in Hilbert spaces
    Yongdong Huang
    Yuanyuan Yang
    Journal of Inequalities and Applications, 2020
  • [36] On the duality of c-fusion frames in Hilbert spaces
    Rahimi, A.
    Darvishi, Z.
    Daraby, B.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2017, 7 (04) : 335 - 348
  • [37] Continuous k-Fusion Frames in Hilbert Spaces
    Sadri, Vahid
    Ahmadi, Reza
    Jafarizadeh, Mohammad Ali
    Nami, Susan
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2020, 17 (01): : 39 - 55
  • [38] Woven g-Fusion Frames in Hilbert Spaces
    Mohammadrezaee, Maryam
    Rashidi-Kouchi, Mehdi
    Nazari, Akbar
    Oloomi, Ali
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2021, 18 (03): : 133 - 151
  • [39] ON SOME NEW INEQUALITIES FOR FUSION FRAMES IN HILBERT SPACES
    Li, Dongwei
    Leng, Jinsong
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2017, 20 (03): : 889 - 900
  • [40] Continuous k-Frames and their Dual in Hilbert Spaces
    Rahimlou, Gholamreza
    Ahmadi, Reza
    Jafarizadeh, Mohammad Ali
    Nami, Susan
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2020, 17 (03): : 145 - 160