The Physical Parameters of Four WC-type Wolf-Rayet Stars in the Large Magellanic Cloud: Evidence of Evolution*

被引:10
|
作者
Aadland, Erin [1 ,2 ]
Massey, Philip [1 ,2 ]
Hillier, D. John [3 ,4 ]
Morrell, Nidia [5 ]
机构
[1] No Arizona Univ, Dept Astron & Planetary Sci, Flagstaff, AZ 86011 USA
[2] Lowell Observ, 1400 W Mars Hill Rd, Flagstaff, AZ 86001 USA
[3] Univ Pittsburgh, Dept Phys & Astron, 3941 OHara St, Pittsburgh, PA 15260 USA
[4] Univ Pittsburgh, Pittsburgh Particle Phys Astrophys & Cosmol Ctr P, 3941 OHara St, Pittsburgh, PA 15260 USA
[5] Carnegie Observ, Las Campanas Observ, Casilla 601, La Serena, Chile
来源
ASTROPHYSICAL JOURNAL | 2022年 / 924卷 / 02期
基金
美国国家科学基金会;
关键词
ELECTRON-IMPACT-EXCITATION; EFFECTIVE COLLISION STRENGTHS; BLANKETED MODEL ATMOSPHERES; RADIATION-DRIVEN WINDS; ATOMIC DATA; OPACITY CALCULATIONS; IRON PROJECT; OSCILLATOR-STRENGTHS; RATE COEFFICIENTS; MASSIVE-STAR;
D O I
10.3847/1538-4357/ac3426
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a spectral analysis of four Large Magellanic Cloud (LMC) WC-type Wolf-Rayet (WR) stars (BAT99-8, BAT99-9, BAT99-11, and BAT99-52) to shed light on two evolutionary questions surrounding massive stars. The first is: are WO-type WR stars more oxygen enriched than WC-type stars, indicating further chemical evolution, or are the strong high-excitation oxygen lines in WO-type stars an indication of higher temperatures. This study will act as a baseline for answering the question of where WO-type stars fall in WR evolution. Each star's spectrum, extending from 1100 to 25000 angstrom, was modeled using cmfgen to determine the star's physical properties such as luminosity, mass-loss rate, and chemical abundances. The oxygen abundance is a key evolutionary diagnostic, and with higher resolution data and an improved stellar atmosphere code, we found the oxygen abundance to be up to a factor of 5 lower than that of previous studies. The second evolutionary question revolves around the formation of WR stars: do they evolve by themselves or is a close companion star necessary for their formation? Using our derived physical parameters, we compared our results to the Geneva single-star evolutionary models and the Binary Population and Spectral Synthesis (BPASS) binary evolutionary models. We found that both the Geneva solar-metallicity models and BPASS LMC-metallicity models are in agreement with the four WC-type stars, while the Geneva LMC-metallicity models are not. Therefore, these four WC4 stars could have been formed either via binary or single-star evolution.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] THE STELLAR ASSOCIATION LH39 IN THE LARGE MAGELLANIC CLOUD AND ITS WOLF-RAYET STAR
    SCHILD, H
    ASTRONOMY & ASTROPHYSICS, 1987, 173 (02) : 405 - 407
  • [42] Discovery of a new Wolf-Rayet star and a candidate star cluster in the Large Magellanic Cloud with Spitzer
    Gvaramadze, V. V.
    Chene, A. -N.
    Kniazev, A. Y.
    Schnurr, O.
    Shenar, T.
    Sander, A.
    Hainich, R.
    Langer, N.
    Hamann, W. -R.
    Chu, Y. -H.
    Gruendl, R. A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 442 (02) : 929 - 945
  • [43] The episodic dust-making Wolf-Rayet star HD 38030 in the Large Magellanic Cloud
    Williams, Peredur M.
    Morrell, Nidia, I
    Boutsia, Konstantina
    Massey, Philip
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 505 (04) : 5029 - 5037
  • [44] WOLF-RAYET STARS IN THE MAGELLANIC CLOUDS .4. THE EXTRAORDINARILY BROAD-LINED, TRIPLE SYSTEM R130 IN THE LARGE MAGELLANIC CLOUD
    MOFFAT, AFJ
    SEGGEWISS, W
    ASTROPHYSICAL JOURNAL, 1986, 309 (02): : 714 - 720
  • [45] Wolf-rayet binaries in the Magellanic Clouds and implications for massive-star evolution - I. Small Magellanic Cloud
    Foellmi, C
    Moffat, AFJ
    Guerrero, MA
    Markevitch, M
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2003, 338 (02) : 360 - 388
  • [46] Circumstellar carbonaceous material associated with late-type dusty WC Wolf-Rayet stars
    Chiar, JE
    Tielens, AGGM
    ASTROPHYSICAL JOURNAL, 2001, 550 (02): : L207 - L211
  • [47] Circumstellar carbonaceous material associated with late-type dusty WC Wolf-Rayet stars
    Chiar, JE
    Tielens, AGGM
    Peeters, E
    BIOASTRONOMY 2002: LIFE AMONG THE STARS, 2004, (213): : 193 - 196
  • [49] SPECTROSCOPIC STUDIES OF WOLF-RAYET STARS .5. OPTICAL SPECTROPHOTOMETRY OF THE EMISSION-LINES IN SMALL MAGELLANIC CLOUD STARS
    CONTI, PS
    MASSEY, P
    GARMANY, CD
    ASTROPHYSICAL JOURNAL, 1989, 341 (01): : 113 - 119
  • [50] WO-type Wolf-Rayet Stars: The Last Hurrah of Massive Star Evolution*
    Aadland, Erin
    Massey, Philip
    Hillier, D. John
    Morrell, Nidia, I
    Neugent, Kathryn F.
    Eldridge, J. J.
    ASTROPHYSICAL JOURNAL, 2022, 931 (02):