A quantitative compactness estimate for scalar conservation laws

被引:13
|
作者
De Lellis, C [1 ]
Golse, F
机构
[1] ETH Zentrum, Dept Math, CH-8092 Zurich, Switzerland
[2] Lab JL Lions, F-75252 Paris, France
关键词
D O I
10.1002/cpa.20082
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the case of a scalar conservation law with convex flux in space dimension one., P. D. Lax proved [Comm. Pure and Appl. Math. 7 (1954)] that the semigroup defining the entropy solution is compact in L-loc(l) for each positive time. The present note gives an estimate of the E-entropy in L-loc(l) of the set of entropy solutions at time t > 0 whose initial data run through a bounded set in L-1. (c) 2005 Wiley Periodicals, Inc.
引用
收藏
页码:989 / 998
页数:10
相关论文
共 50 条
  • [31] Γ -Entropy Cost for Scalar Conservation Laws
    Giovanni Bellettini
    Lorenzo Bertini
    Mauro Mariani
    Matteo Novaga
    [J]. Archive for Rational Mechanics and Analysis, 2010, 195 : 261 - 309
  • [32] ON THE CONCENTRATION OF ENTROPY FOR SCALAR CONSERVATION LAWS
    Bianchini, Stefano
    Marconi, Elio
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2016, 9 (01): : 73 - 88
  • [33] Scalar conservation laws with stochastic forcing
    Debussche, A.
    Vovelle, J.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (04) : 1014 - 1042
  • [34] A priori error estimate for a well-balanced scheme designed for inhomogeneous scalar conservation laws
    Gosse, L
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (05): : 467 - 472
  • [35] On compactness of bounded solutions to multidimensional conservation laws with memory
    Eduard Feireisl
    Hana Petzeltová
    [J]. Nonlinear Differential Equations and Applications NoDEA, 1998, 5 : 193 - 204
  • [36] COMPENSATED COMPACTNESS AND GENERAL SYSTEMS OF CONSERVATION-LAWS
    DIPERNA, RJ
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 292 (02) : 383 - 420
  • [37] Compensated compactness for 2D conservation laws
    Tadmor, E
    Rascle, M
    Bagnerini, P
    [J]. JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2005, 2 (03) : 697 - 712
  • [38] COMPENSATED COMPACTNESS AND HYPERBOLIC SYSTEMS OF CONSERVATION-LAWS
    SERRE, D
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1984, 299 (12): : 555 - 558
  • [39] On compactness of bounded solutions to multidimensional conservation laws with memory
    Feireisl, Eduard
    Petzeltova, Hana
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1998, 5 (02): : 193 - 204
  • [40] A theory of implicit methods for scalar conservation laws
    Breuss, M
    [J]. HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, 2003, : 377 - 386