Algorithmic correspondence for intuitionistic modal mu-calculus

被引:27
|
作者
Conradie, Willem [1 ]
Fomatati, Yves [2 ]
Palmigiano, Alessandra [3 ]
Sourabh, Sumit [4 ]
机构
[1] Univ Johannesburg, Dept Pure & Appl Math, Auckland Pk, South Africa
[2] Univ Ottawa, Dept Math & Stat, Ottawa, ON K1N 6N5, Canada
[3] Delft Univ Technol, Fac Technol Policy & Management, NL-2600 AA Delft, Netherlands
[4] Univ Amsterdam, Inst Log Language & Computat, NL-1012 WX Amsterdam, Netherlands
基金
新加坡国家研究基金会;
关键词
Sahlqvist correspondence; Algorithmic correspondence; Modal mu-calculus; Intuitionistic logic;
D O I
10.1016/j.tcs.2014.10.027
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the present paper, the algorithmic correspondence theory developed in Conradie and Palmigiano [9] is extended to mu-calculi with a non-classical base. We focus in particular on the language of bi-intuitionistic modal mu-calculus. We enhance the algorithm ALBA introduced in Conradie and Palmigiano [9] so as to guarantee its success on the class of recursive mu-inequalities, which we introduce in this paper. Key to the soundness of this enhancement are the order-theoretic properties of the algebraic interpretation of the fixed point operators. We show that, when restricted to the Boolean setting, the recursive mu-inequalities coincide with the "Sahlqvist mu-formulas" defined in van Benthem, Bezhanishvili and Hodkinson [22]. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:30 / 62
页数:33
相关论文
共 50 条
  • [1] Sahlqvist Correspondence for Modal mu-calculus
    Johan van Benthem
    Nick Bezhanishvili
    Ian Hodkinson
    [J]. Studia Logica, 2012, 100 : 31 - 60
  • [2] Sahlqvist Correspondence for Modal mu-calculus
    van Benthem, Johan
    Bezhanishvili, Nick
    Hodkinson, Ian
    [J]. STUDIA LOGICA, 2012, 100 (1-2) : 31 - 60
  • [3] On the proof theory of the modal mu-calculus
    Studer T.
    [J]. Studia Logica, 2008, 89 (3) : 343 - 363
  • [4] DUALITY AND THE COMPLETENESS OF THE MODAL MU-CALCULUS
    AMBLER, S
    KWIATKOWSKA, M
    MEASOR, N
    [J]. THEORETICAL COMPUTER SCIENCE, 1995, 151 (01) : 3 - 27
  • [5] Simple Probabilistic Extension of Modal Mu-Calculus
    Liu, Wanwei
    Song, Lei
    Wang, Ji
    Zhang, Lijun
    [J]. PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), 2015, : 882 - 888
  • [6] LOCAL MODEL CHECKING IN THE MODAL MU-CALCULUS
    STIRLING, C
    WALKER, D
    [J]. THEORETICAL COMPUTER SCIENCE, 1991, 89 (01) : 161 - 177
  • [7] ON MODAL MU-CALCULUS AND BUCHI TREE AUTOMATA
    KAIVOLA, R
    [J]. INFORMATION PROCESSING LETTERS, 1995, 54 (01) : 17 - 22
  • [8] LOCAL MODEL CHECKING IN THE MODAL MU-CALCULUS
    STIRLING, C
    WALKER, D
    [J]. LECTURE NOTES IN COMPUTER SCIENCE, 1989, 351 : 369 - 383
  • [9] A modal mu-calculus for durational transition systems
    Seidl, H
    [J]. 11TH ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, PROCEEDINGS, 1996, : 128 - 137
  • [10] Simplifying the modal mu-calculus alternation hierarchy
    Bradfield, JC
    [J]. STACS 98 - 15TH ANNUAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, 1998, 1373 : 39 - 49