Inhomogeneous Incompressible Navier-Stokes Equations on Thin Domains

被引:0
|
作者
Sun, Yongzhong [1 ]
Wang, Shifang [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
关键词
Inhomogeneous incompressible Navier-Stokes equation; Thin domain limit; Dimensional reduction; Relative energy; WEAK-STRONG UNIQUENESS;
D O I
10.1007/s40304-019-00202-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the inhomogeneous incompressible Navier-Stokes equation on thin domains T-2 x epsilon T, epsilon -> 0. It is shown that the weak solutions on T-2 x epsilon T converge to the strong/weak solutions of the 2D inhomogeneous incompressible Navier-Stokes equations on T-2 as epsilon -> 0 on arbitrary time interval.
引用
收藏
页码:239 / 253
页数:15
相关论文
共 50 条
  • [31] Convergence of compressible Navier-Stokes-Maxwell equations to incompressible Navier-Stokes equations
    YANG JianWei
    WANG Shu
    ScienceChina(Mathematics), 2014, 57 (10) : 2153 - 2162
  • [32] Variational formulation of incompressible Navier-Stokes equations
    Ecer, Akin
    PROGRESS IN COMPUTATIONAL FLUID DYNAMICS, 2023, 23 (06): : 381 - 387
  • [33] ON THE INCOMPRESSIBLE LIMIT OF THE COMPRESSIBLE NAVIER-STOKES EQUATIONS
    LIN, CK
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (3-4) : 677 - 707
  • [34] A Splitting Preconditioner for the Incompressible Navier-Stokes Equations
    Hu, Ze-Jun
    Huang, Ting-Zhu
    Tan, Ning-Bo
    MATHEMATICAL MODELLING AND ANALYSIS, 2013, 18 (05) : 612 - 630
  • [35] Newton linearization of the incompressible Navier-Stokes equations
    Sheu, TWH
    Lin, RK
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2004, 44 (03) : 297 - 312
  • [36] Spectral properties of the incompressible Navier-Stokes equations
    Lauren, Fredrik
    Nordstrom, Jan
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 429
  • [37] Stochastic nonhomogeneous incompressible Navier-Stokes equations
    Cutland, Nigel J.
    Enright, Brendan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 228 (01) : 140 - 170
  • [38] Projection methods for the incompressible Navier-Stokes equations
    Zhang Qing-Hai
    Li Yang
    ACTA PHYSICA SINICA, 2021, 70 (13)
  • [39] A multigrid algorithm for the incompressible Navier-Stokes equations
    Swanson, RC
    Thomas, JL
    Roberts, TW
    COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 2141 - 2144
  • [40] A Chimera method for the incompressible Navier-Stokes equations
    Houzeaux, G.
    Eguzkitza, B.
    Aubry, R.
    Owen, H.
    Vazquez, M.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2014, 75 (03) : 155 - 183