The Crank-Nicolson/Adams-Bashforth Scheme for the Time-Dependent Navier-Stokes Equations with Nonsmooth Initial Data

被引:14
|
作者
He, Yinnian [1 ]
机构
[1] Xi An Jiao Tong Univ, Fac Sci, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China
关键词
Adams-Bashforth scheme; Crank-Nicolson scheme; mixed finite element; Navier-Stokes equations; FINITE-ELEMENT APPROXIMATION; NONLINEAR GALERKIN METHOD; ERROR ANALYSIS; STABILITY; DISCRETIZATION; CONVERGENCE; REGULARITY; ACCURATE;
D O I
10.1002/num.20613
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the stability and convergence of the Crank-Nicolson/Adams-Bashforth scheme for the two-dimensional nonstationary Navier-Stokes equations with a nonsmooth initial data. A finite element method is applied for the spatial approximation of the velocity and pressure. The time discretization is based on the implicit Crank-Nicolson scheme for the linear terms and the explicit Adams-Bashforth scheme for the nonlinear term. Moreover, we prove that the scheme is almost unconditionally stable for a nonsmooth initial data u(0) with divu(0) = 0, i.e., the time step tau satisfies: tau = C(0) if u(0) is an element of H(1) boolean AND L(infinity); tau vertical bar log h vertical bar <= C(0) if u(0) is an element of H(1) for the mesh size h and some positive constant C(0). Finally, we obtain some error estimates for the discrete velocity and pressure under the above stability condition. (C) 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 28: 155-187, 2012
引用
收藏
页码:155 / 187
页数:33
相关论文
共 50 条
  • [21] An essentially non-oscillatory Crank-Nicolson procedure for incompressible Navier-Stokes equations
    Kim, Seongjai
    [J]. RECENT PROGRESS IN COMPUTATIONAL SCIENCES AND ENGINEERING, VOLS 7A AND 7B, 2006, 7A-B : 611 - 614
  • [22] A Modular Voigt Regularization of the Crank-Nicolson Finite Element Method for the Navier-Stokes Equations
    Y. Rong
    J. A. Fiordilino
    F. Shi
    Y. Cao
    [J]. Journal of Scientific Computing, 2022, 92
  • [23] SECOND ORDER PRESSURE ESTIMATES FOR THE CRANK-NICOLSON DISCRETIZATION OF THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    Sonner, Florian
    Richter, Thomas
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (01) : 375 - 409
  • [24] An essentially non-oscillatory Crank-Nicolson procedure for incompressible Navier-Stokes equations
    Cho, Chung-Ki
    Kim, Seongjai
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2008, 56 (08) : 1351 - 1357
  • [25] Variational multiscale method based on the Crank-Nicolson extrapolation scheme for the non-stationary Navier-Stokes equations
    Shan, Li
    Hou, Yanren
    Zheng, Haibiao
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2012, 89 (16) : 2198 - 2223
  • [26] Stability and convergence analysis of a Crank-Nicolson leap-frog scheme for the unsteady incompressible Navier-Stokes equations
    Tang, Qili
    Huang, Yunqing
    [J]. APPLIED NUMERICAL MATHEMATICS, 2018, 124 : 110 - 129
  • [27] FULLY DISCRETE FINITE ELEMENT METHOD BASED ON SECOND-ORDER CRANK-NICOLSON/ADAMS-BASHFORTH SCHEME FOR THE EQUATIONS OF MOTION OF OLDROYD FLUIDS OF ORDER ONE
    Guo, Yingwen
    He, Yinnian
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (08): : 2583 - 2609
  • [28] Second-Order Convergence of the Linearly Extrapolated Crank-Nicolson Method for the Navier-Stokes Equations with H1 Initial Data
    Li, Buyang
    Ma, Shu
    Wang, Na
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2021, 88 (03)
  • [29] A numerical scheme based on compact integrated-RBFs and Adams-Bashforth/Crank-Nicolson algorithms for diffusion and unsteady fluid flow problems
    Thai-Quang, N.
    Le-Cao, K.
    Mai-Duy, N.
    Tran, C. -D.
    Tran-Cong, T.
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2013, 37 (12) : 1653 - 1667
  • [30] Nonlinear Galerkin method and Crank-Nicolson approximation for the Navier Stokes equations
    He, Yinnian
    Huang, Qinghuai
    [J]. Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 1995, 29 (02): : 97 - 106