A Common Spatial Pattern and Wavelet Packet Decomposition Combined Method for EEG-Based Emotion Recognition

被引:20
|
作者
Chen, Jingxia [1 ,2 ]
Jiang, Dongmei [1 ]
Zhang, Yanning [1 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci & Engn, Xian 710072, Shaanxi, Peoples R China
[2] Shaanxi Univ Sci & Technol, Dept Elect & Informat Engn, Xian 710021, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
EEG; common spatial pattern; wavelet packet decomposition; emotion recognition; SVM; MUSIC; SELECTION; ENTROPY;
D O I
10.20965/jaciii.2019.p0274
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To effectively reduce the day-to-day fluctuations and differences in subjects' brain electroencephalogram (EEG) signals and improve the accuracy and stability of EEG emotion classification, a new EEG feature extraction method based on common spatial pattern (CSP) and wavelet packet decomposition (WPD) is proposed. For the five-day emotion related EEG data of 12 subjects, the CSP algorithm is firstly used to project the raw EEG data into an optimal subspace to extract the discriminative features by maximizing the Kullback-Leibler (KL) divergences between the two categories of EEG data. Then the WPD algorithm is used to decompose the EEG signals into the related features in time-frequency domain. Finally, four stateof-the-art classifiers including Bagging tree, SVM, linear discriminant analysis and Bayesian linear discriminant analysis are used to make binary emotion classification. The experimental results show that with CSP spatial filtering, the emotion classification on the WPD features extracted with bior3.3 wavelet base gets the best accuracy of 0.862, which is 29.3% higher than that of the power spectral density (PSD) feature without CSP preprocessing, is 23% higher than that of the PSD feature with CSP preprocessing, is 1.9% higher than that of the WPD feature extracted with bior3.3 wavelet base without CSP preprocessing, and is 3.2% higher than that of the WPD feature extracted with the rbio6.8 wavelet base without CSP preprocessing. Our proposed method can effectively reduce the variance and non-stationary of the cross-day EEG signals, extract the emotion related features and improve the accuracy and stability of the cross-day EEG emotion classification. It is valuable for the development of robust emotional brain-computer interface applications.
引用
收藏
页码:274 / 281
页数:8
相关论文
共 50 条
  • [41] EEG-Based Emotion Recognition via Knowledge-Integrated Interpretable Method
    Zhang, Ying
    Cui, Chen
    Zhong, Shenghua
    MATHEMATICS, 2023, 11 (06)
  • [42] A Transformer Convolutional Network With the Method of Image Segmentation for EEG-Based Emotion Recognition
    Zhang, Xinyiy
    Cheng, Xiankai
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 401 - 405
  • [43] SFE-Net: EEG-based Emotion Recognition with Symmetrical Spatial Feature Extraction
    Deng, Xiangwen
    Zhu, Junlin
    Yang, Shangming
    MM 2021 - Proceedings of the 29th ACM International Conference on Multimedia, 2021, : 2391 - 2400
  • [44] A survey on EEG-based neurophysiological research for emotion recognition
    Badajena, Jenamani Chandrakanta
    Sethi, Srinivas
    Dash, Sanjit Kumar
    Sahoo, Ramesh Kumar
    CCF TRANSACTIONS ON PERVASIVE COMPUTING AND INTERACTION, 2023, 5 (03) : 333 - 349
  • [45] Comparison of Classification Methods for EEG-based Emotion Recognition
    Zheng, Wei-Long
    Santana, Roberto
    Lu, Bao-Liang
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING, 2015, VOLS 1 AND 2, 2015, 51 : 1184 - 1187
  • [46] EEG-based emotion recognition systems; comprehensive study
    Hamzah, Hussein Ali
    Abdalla, Kasim K.
    HELIYON, 2024, 10 (10)
  • [47] EEG-based Emotion Recognition during Watching Movies
    Nie, Dan
    Wang, Xiao-Wei
    Shi, Li-Chen
    Lu, Bao-Liang
    2011 5TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2011, : 667 - 670
  • [48] The analytic common spatial patterns method for EEG-based BCI data
    Falzon, Owen
    Camilleri, Kenneth P.
    Muscat, Joseph
    JOURNAL OF NEURAL ENGINEERING, 2012, 9 (04)
  • [49] TMLP plus SRDANN: A domain adaptation method for EEG-based emotion recognition
    Li, Wei
    Hou, Bowen
    Li, Xiaoyu
    Qiu, Ziming
    Peng, Bo
    Tian, Ye
    MEASUREMENT, 2023, 207
  • [50] EEG-Based Emotion Recognition with Similarity Learning Network
    Wang, Yixin
    Qiu, Shuang
    Li, Jinpeng
    Ma, Xuelin
    Liang, Zhiyue
    Li, Hui
    He, Huiguang
    2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 1209 - 1212