Near room-temperature in situ interfacial polymerization for PEDOT-based thermoelectric textile

被引:7
|
作者
Zhang, Xuefei [1 ]
Li, Ting-Ting [1 ,2 ]
Ren, Hai-Tao [1 ]
Peng, Hao-Kai [1 ]
Jiang, Qian [1 ]
Wu, Liwei [1 ]
Shiu, Bing-Chiuan [3 ]
Wang, Yanting [1 ]
Lou, Ching-Wen [1 ,4 ,5 ,6 ]
Lin, Jia-Horng [1 ,4 ,7 ,8 ]
机构
[1] Tiangong Univ, Sch Text Sci & Engn, Innovat Platform Intelligent & Energy Saving Text, Tianjin 300387, Peoples R China
[2] Tiangong Univ, Tianjin & Minist Educ Key Lab Adv Text Compo site, Tianjin 300387, Peoples R China
[3] Minjiang Univ, Coll Mat & Chem Engn, Fuzhou 350108, Peoples R China
[4] Qingdao Univ, Coll Text & Clothing, Adv Med Care & Protect Technol Res Ctr, Qingdao 266071, Peoples R China
[5] Asia Univ, Dept Bioinformat & Med Engn, Taichung 413305, Taiwan
[6] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 404332, Taiwan
[7] Feng Chia Univ, Dept Fiber & Composite Mat, Lab Fiber Applicat & Mfg, Taichung 40724, Taiwan
[8] China Med Univ, Sch Chinese Med, Taichung 40402, Taiwan
来源
基金
中国国家自然科学基金;
关键词
Thermoelectric textile; in situ interfacial polymerization; Response surface methodology; RESPONSE-SURFACE METHODOLOGY; POLYPYRROLE; PERFORMANCE; FABRICATION; BEHAVIOR; FILMS; POWER; OPTIMIZATION; COMPOSITES;
D O I
10.1016/j.mtcomm.2022.103856
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Fiber-based organic thermoelectric composites have attracted increasing attention on smart wearable devices. Herein, a near room-temperature in situ interfacial polymerization method is proposed to fabricate a thermo-electric textile with core-shell structures. To optimize the parameters of fabrication process, the response surface methodology is applied to obtain the optimal experimental parameters. The thermoelectric textiles fabricated by the optimal parameters (0.30 mol/L Na2S2O8, 0.31 mol/L TsOH, 225 mu l/10 ml EDOT, and-13 ? reaction temperature) show a high electrical conductivity (2.19 S.cm(-1)) and Seebeck coefficient (14 mu V.K-1). Further, a thermopile composed of thermoelectric textile strips and copper wires is constructed to verify the heat-to-electricity conversion of thermoelectric textile. At a temperature difference of 30 ?C, the thermoelectric de-vice can continuously produce voltage and power factor to 0.72 mV and 5.52 x 10(-2) nW respectively. Thus, the development of the thermoelectric fabric provides a conception to fabricate flexible thermoelectric devices.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] General room-temperature Suzuki–Miyaura polymerization for organic electronics
    Haigen Xiong
    Qijie Lin
    Yu Lu
    Ding Zheng
    Yawen Li
    Song Wang
    Wenbin Xie
    Congqi Li
    Xin Zhang
    Yuze Lin
    Zhi-Xiang Wang
    Qinqin Shi
    Tobin J. Marks
    Hui Huang
    Nature Materials, 2024, 23 : 695 - 702
  • [42] Eco-Friendly Room-Temperature Polymerization in Emulsions and Beyond
    Zhang, Tan
    Xu, Gu
    Blum, Frank D.
    POLYMER REVIEWS, 2023, 63 (04) : 852 - 865
  • [43] Two-dimensional materials applied for room-temperature thermoelectric photodetectors
    Wang, Jiaqi
    Xie, Zhemiao
    Yeow, John T. W.
    MATERIALS RESEARCH EXPRESS, 2020, 7 (11)
  • [44] Room-temperature, energy storage textile with multicore-sheath structure obtained via in-situ coaxial electrospinning
    Zhang, Yinghao
    Li, Tianshi
    Zhang, Shuohao
    Jiang, Ling
    Xia, Jun
    Xie, Jiaying
    Chen, Kefei
    Bao, Lixia
    Lei, Jingxin
    Wang, Jiliang
    CHEMICAL ENGINEERING JOURNAL, 2022, 436
  • [45] LiDFOB Initiated In Situ Polymerization of Novel Eutectic Solution Enables Room-Temperature Solid Lithium Metal Batteries
    Wu, Han
    Tang, Ben
    Du, Xiaofan
    Zhang, Jianjun
    Yu, Xinrun
    Wang, Yantao
    Ma, Jun
    Zhou, Qian
    Zhao, Jingwen
    Dong, Shanmu
    Xu, Gaojie
    Zhang, Jinning
    Xu, Hai
    Cui, Guanglei
    Chen, Liquan
    ADVANCED SCIENCE, 2020, 7 (23)
  • [46] Thermoelectric Penta-Silicene with a High Room-Temperature Figure of Merit
    Gao, Zhibin
    Wang, Jian-Sheng
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (12) : 14298 - 14307
  • [47] Interfacial morphology evolution of a novel room-temperature ultrasonic bonding method based on nanocone arrays
    Wang, Haozhe
    Ju, Longlong
    Guo, Yukun
    Mo, Xiu
    Ma, Shuo
    Hu, Anmin
    Lia, Ming
    APPLIED SURFACE SCIENCE, 2015, 324 : 849 - 853
  • [48] Highly Sensitive Room-Temperature Ammonia Sensors Based on Single-Wall Carbon Nanotubes Modified by PEDOT
    Stulik, Jiri
    Slauf, Josef
    Polansky, Radek
    Mergl, Martin
    Kalbac, Martin
    IEEE SENSORS JOURNAL, 2022, 22 (04) : 3024 - 3032
  • [49] Enhanced near-room-temperature thermoelectric performance in GeTe
    Tan, Xian Yi
    Dong, Jin-Feng
    Jia, Ning
    Zhang, Hong-Xia
    Ji, Rong
    Suwardi, Ady
    Li, Zhi-Liang
    Zhu, Qiang
    Xu, Jian-Wei
    Yan, Qing-Yu
    RARE METALS, 2022, 41 (09) : 3027 - 3034
  • [50] Near room-temperature magnetocaloric effect of Co-based bulk metallic glass
    Liu, Cong
    Li, Qiang
    Huo, Juntao
    Yang, Weiming
    Chang, Liang
    Chang, Chuntao
    Sun, Yanfei
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2018, 446 : 162 - 165