Vertical graphene nanosheetsmodified Al current collectors for high-performance sodium-ion batteries

被引:30
|
作者
Wang, Kexin [1 ]
Wang, Chongzhen [1 ]
Yang, Hao [2 ]
Wang, Xiongbiao [3 ]
Cao, Feng [3 ]
Wu, Qinci [1 ]
Peng, Hailin [1 ,3 ]
机构
[1] Peking Univ, Beijing Sci & Engn Ctr Nanocarbons, Beijing Natl Lab Mol Sci, Ctr Nanochem CNC,Coll Chem & Mol Engn, Beijing 100871, Peoples R China
[2] Peking Univ, Acad Adv Interdisciplinary Studies, Beijing 100871, Peoples R China
[3] BGI, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
vertical graphene nanosheets; sodium-ion batteries; current collector; interfacial resistance; SUPERIOR RATE CAPABILITY; CYCLING STABILITY; LI4TI5O12; ANODE; CATHODE; SUPERCAPACITORS; ELECTROLYTE; NA3V2(PO4)3; RESISTANCE; INTERFACE; MECHANISM;
D O I
10.1007/s12274-020-2780-2
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rechargeable sodium-ion batteries (SIBs) are promising candidates for large-scale energy storage owing to their excellent high-power performance. However, Al-based current collectorsat both anodes and cathodes of SIBs, which widely influence the power properties of a variety of electrodes in SIBs, have rarely been investigated. Here, we demonstrate that vertical graphene nanosheets grown on commercial Al foil by the plasma-enhanced chemical vapor deposition (PECVD) method, form a robust connection with the carbon-based conductive network of the electrode, thereby significantly reducing the electrode-current collector interfacial resistance. For sodium vanadium phosphate (NVP) anodes with vertical graphenenanosheetmodified Al foil (G-Al) current collectors, the interfacial resistance between the electrode and current collector is reduced 20-fold compared with that in the case of Al foil. The G-Al current collector reduces the polarization and improves the rate capability compared with that of Al current collectors within both cathodes and anodes of SIBs. At a high rate of 5 C, the capacity retention of NVP cathode with G-Al current collector is 74%, which is much higher than that with Al foil (22%).We believe that the obtained results support the prospect for the widespread use of G-Al current collectors in the further improvement of high-power profiles of SIBs.
引用
收藏
页码:1948 / 1954
页数:7
相关论文
共 50 条
  • [41] Tailoring the growth of iron hexacyanoferrates for high-performance cathode of sodium-ion batteries
    Xiang, Jingjing
    Hao, Youchen
    Gao, Yuting
    Ji, Lei
    Wang, Li
    Sun, Guoxing
    Tang, Yuxin
    Zhu, Yaofeng
    Jiang, Yinzhu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 946
  • [42] SbPS4: A novel anode for high-performance sodium-ion batteries
    Yang, Miao
    Sun, Zhonghui
    Nie, Ping
    Yu, Haiyue
    Zhao, Chende
    Yu, Mengxuan
    Luo, Zhongzhen
    Geng, Hongbo
    Wu, Xinglong
    CHINESE CHEMICAL LETTERS, 2022, 33 (01) : 470 - 474
  • [43] Synthesis of NiS/carbon composites as anodes for high-performance sodium-ion batteries
    Jinkai Wang
    Daxian Cao
    Guidong Yang
    Yaodong Yang
    Hongkang Wang
    Journal of Solid State Electrochemistry, 2017, 21 : 3047 - 3055
  • [44] Design of high-performance antimony/MXene hybrid electrodes for sodium-ion batteries
    Arnold, Stefanie
    Gentile, Antonio
    Li, Yunjie
    Wang, Qingsong
    Marchionna, Stefano
    Ruffo, Riccardo
    Presser, Volker
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (19) : 10569 - 10585
  • [45] Modification of Prussian blue analogues as high-performance cathodes for sodium-ion batteries
    Huang, Yifan
    Mu, Wenning
    Meng, Junjin
    Bi, Xiaolong
    Lei, Xuefei
    Luo, Shaohua
    Chemical Engineering Journal, 2024, 499
  • [46] Structural engineering of electrode materials to boost high-performance sodium-ion batteries
    Liu, Qiannan
    Hu, Zhe
    Zou, Chao
    Jin, Huile
    Wang, Shun
    Li, Lin
    CELL REPORTS PHYSICAL SCIENCE, 2021, 2 (09):
  • [47] Defect Engineering in Prussian Blue Analogs for High-Performance Sodium-Ion Batteries
    Liu, Xinyi
    Cao, Yu
    Sun, Jie
    ADVANCED ENERGY MATERIALS, 2022, 12 (46)
  • [48] A high-performance layered Cr-Based cathode for sodium-ion batteries
    Xi, Kaiying
    Chu, Shufen
    Zhang, Xiaoyu
    Zhang, Xueping
    Zhang, Haoyang
    Xu, Hang
    Bian, Jingjing
    Fang, Tiancheng
    Guo, Shaohua
    Liu, Pan
    Chen, Mingwei
    Zhou, Haoshen
    NANO ENERGY, 2020, 67 (67)
  • [49] Bismuth selenide nanocrystalline array electrodes for high-performance sodium-ion batteries
    Dai, Sirui
    Wang, Lichuan
    Shen, Yan
    Wang, Mingkui
    APPLIED MATERIALS TODAY, 2020, 18
  • [50] Antimony/Graphitic Carbon Composite Anode for High-Performance Sodium-Ion Batteries
    Zhao, Xin
    Vail, Sean A.
    Lu, Yuhao
    Song, Jie
    Pan, Wei
    Evans, David R.
    Lee, Jong-Jan
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (22) : 13871 - 13878