Binding Energetics of Ferredoxin-NADP+ Reductase with Ferredoxin and Its Relation to Function

被引:27
|
作者
Lee, Young-Ho [1 ]
Ikegami, Takahisa [1 ]
Standley, Daron M. [2 ]
Sakurai, Kazumasa [1 ]
Hase, Toshiharu [1 ]
Goto, Yuji [1 ]
机构
[1] Osaka Univ, Japan Sci & Technol Agcy, Inst Prot Res, Osaka 5650871, Japan
[2] Osaka Univ, WPI Immunol Frontier Res Ctr, Osaka 5650871, Japan
关键词
calorimetry; molecular recognition; protein-protein interactions; structural biology; structure-activity relationships; CONFORMATIONAL ENTROPY; HYDROGEN-EXCHANGE; ELECTRON-TRANSFER; LIGAND-BINDING; NMR RELAXATION; PROTEIN; DYNAMICS; THERMODYNAMICS; DOMAIN; RECOGNITION;
D O I
10.1002/cbic.201100189
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To obtain insight into the motional features of proteins for enzymatic function, we studied binding reactions between ferredoxin-NADP(+) reductase (FNR) and ferredoxin (Fd) using isothermal titration calorimetry and NMR-based magnetic relaxation and hydrogen/deuterium exchange (HDex). Fd-FNR binding was accompanied by endothermic reactions and driven by the entropy gain. Component-wise analysis of the net entropy change revealed that increases in the conformational entropy of the Fd-FNR complex contributed largely to stabilizing the complex. Intriguingly, analyses of magnetic relaxation and HDex rates with X-ray B factor implied that Fd binding led to both structural stiffening and softening of FNR. Enhanced FNR backbone fluctuations suggest favorable contributions to the net conformational entropy. Fd-bound FNR further showed that relatively large-scale motions of the C terminus, a gatekeeper for interactions of NADP(+)(H), were quenched in the closed form, thereby facilitating exit of NADP(+)(H). This can provide a first dynamic structure-based explanation for the negative cooperativity between Fd and NADP(+)(H) via FNR.
引用
收藏
页码:2062 / 2070
页数:9
相关论文
共 50 条