Human Activity Recognition Using K-Nearest Neighbor Machine Learning Algorithm

被引:24
|
作者
Mohsen, Saeed [1 ]
Elkaseer, Ahmed [2 ]
Scholz, Steffen G. [2 ,3 ,4 ]
机构
[1] Al Madina Higher Inst Engn & Technol, Elect & Commun Engn Dept, Giza, Egypt
[2] Karlsruhe Inst Technol, Inst Automat & Appl Informat, D-76344 Karlsruhe, Germany
[3] Karlsruhe Nano Micro Facil KNMF, Eggenstein Leopoldshafen, Germany
[4] Swansea Univ, Coll Engn, Future Mfg Res Inst, Swansea SA1 8EN, W Glam, Wales
关键词
Machine learning; KNN; Human activity recognition; Industry; 4.0;
D O I
10.1007/978-981-16-6128-0_29
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Smart factory in the era of Industry 4.0 requires humans to have continuous communication capabilities among each other's and with the existing smart assets in order to integrate their activities into a cyber-physical system (CPS) within the smart factory. Machine learning (ML) algorithms can help precisely recognize the human activities, provided that well-designed and trained ML algorithms for high performance recognition are developed. This paper presents a k-nearest neighbor (KNN) algorithm for classification of human activities, namely Laying, Downstairs walking, Sitting, Upstairs walking, Standing, andWalking. This algorithm is trained and the algorithm's parameters are precisely tuned of for high accuracy achievement. Experimentally, a normalized confusion matrix, a classification report of human activities, receiver operating characteristic (ROC) curves, and precision-recall curves are used to analyze the performance of the KNN algorithm. The results show that the KNN algorithm provides a high performance in the classification of human activities. The weighted average precision, recall, F1-score, and the area under the micro-average precision-recall curve for the KNN are 90.96%, 90.46%, 90.37%, and 96.5%, respectively, while the area under the ROC curve is 100%.
引用
收藏
页码:304 / 313
页数:10
相关论文
共 50 条
  • [21] Fault recognition based on principal component analysis and k-nearest neighbor algorithm
    Zou G.
    Ren K.
    Ji Y.
    Ding J.
    Zhang S.
    Meitiandizhi Yu Kantan/Coal Geology and Exploration, 2021, 49 (04): : 15 - 23
  • [22] Affection recognition by GSR signal use a improved K-nearest neighbor algorithm
    Du, Yangze
    Lai, Xiangwei
    Liu, Guangyuan
    Lin, Ou
    Journal of Information and Computational Science, 2014, 11 (17): : 6275 - 6283
  • [23] Fault variables recognition using improved k-nearest neighbor reconstruction
    Zhou, Zhe
    Lei, Jie
    Ge, Zhiqiang
    Xu, Xiaobin
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 5562 - 5565
  • [24] GAME PLAYER STRATEGY PATTERN RECOGNITION BY USING K-NEAREST NEIGHBOR
    He, Suoju
    Du, Junping
    Wu, Guoshi
    Li, Jing
    Wang, Yi
    Xie, Fan
    Liu, Zhiqing
    Zhu, Qiliang
    CIICT 2008: PROCEEDINGS OF CHINA-IRELAND INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATIONS TECHNOLOGIES 2008, 2008, : 190 - 193
  • [25] General-purpose learning machine using K-nearest neighbors algorithm
    Hamraz, Seyed Hamid
    Feyzabadi, Seyed Shams
    ROBOCUP 2005: ROBOT SOCCER WORLD CUP IX, 2006, 4020 : 529 - 536
  • [26] Protein kinase inhibitors’ classification using K-Nearest neighbor algorithm
    Arian, Roya
    Hariri, Amirali
    Mehridehnavi, Alireza
    Fassihi, Afshin
    Ghasemi, Fahimeh
    Computational Biology and Chemistry, 2020, 86
  • [27] Fall Detection by Using K-Nearest Neighbor Algorithm on WSN Data
    Erdogan, Senol Zafer
    Bilgin, Turgay Tugay
    Cho, Juphil
    2010 IEEE GLOBECOM WORKSHOPS, 2010, : 2054 - 2058
  • [28] SOFTWARE ARCHITECTURE DECOMPOSITION USING ADAPTIVE K-NEAREST NEIGHBOR ALGORITHM
    Alkhalid, Abdulaziz
    Lung, Chung-Horng
    Ajila, Samuel
    2013 26TH ANNUAL IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2013, : 676 - 679
  • [29] An Enhanced K-Nearest Neighbor Algorithm Using Information Gain and Clustering
    Taneja, Shweta
    Gupta, Charu
    Goyal, Kratika
    Gureja, Dharna
    2014 FOURTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING AND COMMUNICATION TECHNOLOGIES (ACCT 2014), 2014, : 325 - 329
  • [30] Protein kinase inhibitors' classification using K-Nearest neighbor algorithm
    Arian, Roya
    Hariri, Amirali
    Mehridehnavi, Alireza
    Fassihi, Afshin
    Ghasemi, Fahimeh
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2020, 86