Design of β-Titanium microstructures for implant materials

被引:17
|
作者
Callioglu, Safak [1 ,2 ,3 ]
Acar, Pinar [1 ]
机构
[1] Virginia Tech, Blacksburg, VA 24061 USA
[2] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA
[3] Bilkent Univ, Ankara, Turkey
来源
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS | 2020年 / 110卷
关键词
beta-Titanium alloy; Microstructure; Design; Implant; UNCERTAINTY QUANTIFICATION; ALLOY; BEHAVIOR;
D O I
10.1016/j.msec.2020.110715
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
The present work addresses the design of beta-Titanium alloy, TNTZ, microstructure to be used in biomedical applications as implant materials. The TNTZ alloy has recently started to attract interest in the area of biomedical engineering as it can provide elastic modulus values that are comparable to the modulus of the human bone. Such a match between the implant and bone significantly increases the compatibility and functionality of the implant material with the human body. Experimental studies reveal that the modulus of TNTZ varies around 55-60 GPa, whereas the bones typically have modulus around 25-30 GPa. Therefore, to achieve a better match in modulus values and further improve the compatibility of the implant, we present a computational design study. As the properties of materials are significantly affected by the underlying microstructure, we focus on identifying the optimum microstructures. Our goal is to minimize the difference between the elastic modulus values of the microstructure and the bone. To ensure the manufacturability of such an optimum design solution, we analyze the microstructural evolution during deformation processing to obtain the optimum microstructure that can be processed. The outcomes of our analysis demonstrated that the elastic modulus of TNTZ can be as low as 48 GPa.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Preparation of graded porous titanium coatings on titanium implant materials by plasma spraying
    Yang, YZ
    Tian, JM
    Tian, JT
    Chen, ZQ
    Deng, XJ
    Zhang, DH
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 2000, 52 (02): : 333 - 337
  • [22] Flexible SU-8 microstructures for neural implant design
    Spratley, J. P. F.
    Ward, M. C. L.
    Hall, P. S.
    Thursfield, C.
    SENSORS AND ACTUATORS A-PHYSICAL, 2008, 147 (01) : 324 - 331
  • [23] Integrated design of graded microstructures of heterogeneous materials
    N. Takano
    M. Zako
    Archive of Applied Mechanics, 2000, 70 : 585 - 596
  • [24] Integrated design of graded microstructures of heterogeneous materials
    Takano, N
    Zako, M
    ARCHIVE OF APPLIED MECHANICS, 2000, 70 (8-9) : 585 - 596
  • [25] TITANIUM - THE MYSTERY METAL OF IMPLANT DENTISTRY - DENTAL MATERIALS ASPECTS
    PARR, GR
    GARDNER, LK
    TOTH, RW
    JOURNAL OF PROSTHETIC DENTISTRY, 1985, 54 (03): : 410 - 414
  • [26] Binary titanium alloys as dental implant materials-a review
    Liu, Xiaotian
    Chen, Shuyang
    Tsoi, James K. H.
    Matinlinna, Jukka Pekka
    REGENERATIVE BIOMATERIALS, 2017, 4 (05) : 315 - 323
  • [27] Synthesis and characterization of biocompatible polymer interlayers on titanium implant materials
    Adden, Nina
    Gamble, Lara J.
    Castner, David G.
    Hoffmann, Andrea
    Gross, Gerhard
    Menzel, Henning
    BIOMACROMOLECULES, 2006, 7 (09) : 2552 - 2559
  • [28] Surface carbonization of titanium for abrasion-resistant implant materials
    Zhu, Yuhe
    Watari, Fumio
    DENTAL MATERIALS JOURNAL, 2007, 26 (02) : 245 - 253
  • [29] Integrin-mediated signaling in osteoblasts on titanium implant materials
    Krause, A
    Cowles, EA
    Gronowicz, G
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 2000, 52 (04): : 738 - 747
  • [30] Galvanic corrosion of titanium-based dental implant materials
    Arslan, Halit
    Celikkan, Hueseyin
    Oernek, Nisa
    Ozan, Oguz
    Ersoy, A. Ersan
    Aksu, M. Levent
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2008, 38 (06) : 853 - 859