Effect of the cathode open ratios on the water management of a passive vapor-feed direct methanol fuel cell fed with neat methanol

被引:47
|
作者
Li, Xianglin [1 ]
Faghri, Amir [1 ]
机构
[1] Univ Connecticut, Dept Mech Engn, Storrs, CT 06269 USA
基金
美国国家科学基金会;
关键词
DMFC; Methanol crossover; Water management; Neat methanol; Efficiency; Perforated cover; MEMBRANE; PERFORMANCE; TRANSPORT;
D O I
10.1016/j.jpowsour.2011.03.047
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A novel approach has been proposed to improve the water management of a passive direct methanol fuel cell (DMFC) fed with neat methanol without increasing its volume or weight. By adopting perforated covers with different open ratios at the cathode, the water management has been significantly improved in a DMFC fed with neat methanol. An optimized cathode open ratio could ensure both the sufficient supply of oxygen and low water loss. While changing the open ratio of anode vaporizer can adjust the methanol crossover rate in a DMFC. Furthermore, the gas mixing layer, added between the anode vaporizer and the anode current collector to increase the mass transfer resistance, can improve the cell performance, decrease the methanol crossover, and increase the fuel efficiency. For the case of a DMFC fed with neat methanol, an anode vaporizer with the open ratio of 12% and a cathode open ratio of 20% produced the highest peak power density, 22.7 mW cm(-2), and high fuel efficiency, 70.1%, at room temperature of 25 +/- 1 degrees C and ambient humidity of 25-50%. Published by Elsevier B.V.
引用
收藏
页码:6318 / 6324
页数:7
相关论文
共 50 条
  • [31] Overview on Vapor Feed Direct Methanol Fuel Cell
    Halim, F. A.
    Hasran, U. A.
    Masdar, M. S.
    Kamarudin, S. K.
    Daud, W. R. W.
    2ND INTERNATIONAL CONFERENCE ON CHEMISTRY AND CHEMICAL PROCESS (ICCCP 2012), 2012, 3 : 40 - 45
  • [32] Review on utilization of the pervaporation membrane for passive vapor feed direct methanol fuel cell
    Fauzi, N. F. I.
    Hasran, U. A.
    Kamarudin, S. K.
    2ND INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING RESEARCH (ICMER 2013), 2013, 50
  • [33] Water and air management systems for a passive direct methanol fuel cell
    Jewett, Gregory
    Guo, Zhen
    Faghri, Amir
    JOURNAL OF POWER SOURCES, 2007, 168 (02) : 434 - 446
  • [34] Effect of methanol feed concentration on direct methanol fuel cell performance
    Lin, J
    Lee, JK
    Wycisk, R
    Pintauro, PN
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 230 : U1636 - U1637
  • [35] WATER CROSSOVER EXPERIMENTS IN AN OPEN-CATHODE DIRECT METHANOL FUEL CELL
    Kuo, C. C.
    Neal, L. M.
    Crisalle, O. D.
    Lear, W. E.
    Fletcher, J. H.
    PROCEEDINGS OF THE ASME 9TH INTERNATIONAL CONFERENCE ON FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY 2011, 2012, : 745 - 755
  • [36] Anodic reaction of vapor feed direct methanol fuel cell
    Fukunaga, H
    Teranishi, N
    Yamada, K
    KAGAKU KOGAKU RONBUNSHU, 2003, 29 (02) : 179 - 183
  • [37] Vapor feed direct methanol fuel cells with passive thermal-fluids management system
    Guo, Zhen
    Faghri, Amir
    JOURNAL OF POWER SOURCES, 2007, 167 (02) : 378 - 390
  • [38] Improved Vapor-Feed Direct Methanol Fuel Cell by Hydrophobic/Hydrophilic Composite Catalyst Layers via Kelvin Equation
    Zhang, Yujun
    Yuan, Weijian
    Hou, Chenjun
    Zhang, Yufeng
    Wu, Jianfeng
    Zhang, Xuelin
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (09) : 3680 - 3690
  • [39] Optimization of water and air management systems for a passive direct methanol fuel cell
    Jewett, Gregory
    Faghri, Amir
    Xiao, Bin
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2009, 52 (15-16) : 3564 - 3575
  • [40] Integrated anode structure for passive direct methanol fuel cells with neat methanol operation
    Wu, Huijuan
    Zhang, Haifeng
    Chen, Peng
    Guo, Jing
    Yuan, Ting
    Zheng, Junwei
    Yang, Hui
    JOURNAL OF POWER SOURCES, 2014, 248 : 1264 - 1269