Lefschetz pencils on a certain hypersurface in positive characteristic

被引:0
|
作者
Katsura, Toshiyuki [1 ]
机构
[1] Hosei Univ, Fac Sci & Engn, Koganei, Tokyo 1848584, Japan
来源
HIGHER DIMENSIONAL ALGEBRAIC GEOMETRY IN HONOUR OF PROFESSOR YUJIRO KAWAMATA'S SIXTIETH BIRTHDAY | 2017年 / 74卷
关键词
hypersurface; Lefschetz pencil; positive characteristic; configuration; SURFACES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We examine Lefschetz pencils of a certain hypersurface in P-3 over an algebraically closed field of characteristic p > 2, and determine the group structure of sections of the fiber spaces derived from the pencils. Using the structure of a Lefschetz pencil, we give a geometric proof of the unirationality of Fermat surfaces of degree p(a) + 1 with a positive integer a which was first poved by Shioda [10]. As byproducts, we also see that on the hypersurface there exists a (q(3) + q(2) + q + 1)(q+1)-symmetric configuration (resp. a ((q(3) + 1)(q(2) + 1)(q+1), (q(3) + 1)(q + 1)q(2)+1)-configuration) made up of the rational points over F-q (resp. over Fq(2)) and the lines over F-q (resp. over Fq(2)) with q = p(a).
引用
收藏
页码:265 / 278
页数:14
相关论文
共 50 条
  • [21] On certain generating functions in positive characteristic
    F. Pellarin
    R. B. Perkins
    Monatshefte für Mathematik, 2016, 180 : 123 - 144
  • [22] On certain generating functions in positive characteristic
    Pellarin, F.
    Perkins, R. B.
    MONATSHEFTE FUR MATHEMATIK, 2016, 180 (01): : 123 - 144
  • [23] A note on the weak Lefschetz property of monomial complete intersections in positive characteristic
    Brenner, Holger
    Kaid, Almar
    COLLECTANEA MATHEMATICA, 2011, 62 (01) : 85 - 93
  • [24] Classification of right unimodal and bimodal hypersurface singularities in positive characteristic by invariants
    Binyamin, Muhammad Ahsan
    Khan, Junaid Alam
    Mehmood, Khawar
    Shehzad, Amir
    Shuaib, Umer
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2018, 61 (03): : 333 - 343
  • [25] Classification of genus-1 holomorphic Lefschetz pencils
    Hamada, Noriyuki
    Hayano, Kenta
    TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (03) : 1079 - 1119
  • [26] Larsen's alternative, moments, and the monodromy of Lefschetz pencils
    Katz, NM
    CONTRIBUTIONS TO AUTOMORPHIC FORMS, GEOMETRY, AND NUMBER THEORY, 2004, : 521 - 560
  • [27] Topology of holomorphic Lefschetz pencils on the four-torus
    Hamada, Noriyuki
    Hayano, Kenta
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2018, 18 (03): : 1515 - 1572
  • [28] A degree doubling formula for braid monodromies and lefschetz pencils
    Auroux, Denis
    Katzarkov, Ludmil
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2008, 4 (02) : 237 - 318
  • [29] Normality of certain nilpotent varieties in positive characteristic
    Thomsen, JF
    JOURNAL OF ALGEBRA, 2000, 227 (02) : 595 - 613
  • [30] EXPECTED NUMBER AND DISTRIBUTION OF CRITICAL POINTS OF REAL LEFSCHETZ PENCILS
    Ancona, Michele
    ANNALES DE L INSTITUT FOURIER, 2020, 70 (03) : 1085 - 1113