Burning Graphene Layer-by-Layer

被引:28
|
作者
Ermakov, Victor A. [1 ]
Alaferdov, Andrei V. [1 ]
Vaz, Alfredo R. [1 ]
Perim, Eric [2 ]
Autreto, Pedro A. S. [2 ]
Paupitz, Ricardo [3 ]
Galvao, Douglas S. [2 ]
Moshkalev, Stanislav A. [1 ]
机构
[1] Univ Estadual Campinas, Ctr Semicond Components, BR-13083870 Campinas, SP, Brazil
[2] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil
[3] UNESP, Univ Estadual Paulista, Dept Fis, IGCE, BR-13506900 Rio Claro, SP, Brazil
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
基金
巴西圣保罗研究基金会;
关键词
HYPERTHERMAL ATOMIC OXYGEN; LIQUID-PHASE EXFOLIATION; REACTIVE FORCE-FIELD; MULTILAYER GRAPHENE; BASAL-PLANE; OXIDATION; GRAPHITE; REAXFF; MECHANISM; PLASMA;
D O I
10.1038/srep11546
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Graphene, in single layer or multi-layer forms, holds great promise for future electronics and high-temperature applications. Resistance to oxidation, an important property for high-temperature applications, has not yet been extensively investigated. Controlled thinning of multi-layer graphene (MLG), e.g., by plasma or laser processing is another challenge, since the existing methods produce non-uniform thinning or introduce undesirable defects in the basal plane. We report here that heating to extremely high temperatures (exceeding 2000 K) and controllable layer-by-layer burning (thinning) can be achieved by low-power laser processing of suspended high-quality MLG in air in "cold-wall" reactor configuration. In contrast, localized laser heating of supported samples results in non-uniform graphene burning at much higher rates. Fully atomistic molecular dynamics simulations were also performed to reveal details of oxidation mechanisms leading to uniform layer-by-layer graphene gasification. The extraordinary resistance of MLG to oxidation paves the way to novel high-temperature applications as continuum light source or scaffolding material.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Burning Graphene Layer-by-Layer
    Victor A. Ermakov
    Andrei V. Alaferdov
    Alfredo R. Vaz
    Eric Perim
    Pedro A. S. Autreto
    Ricardo Paupitz
    Douglas S. Galvao
    Stanislav A. Moshkalev
    Scientific Reports, 5
  • [2] Layer-by-Layer Removal of Graphene for Device Patterning
    Dimiev, Ayrat
    Kosynkin, Dmitry V.
    Sinitskii, Alexander
    Slesarev, Alexander
    Sun, Zhengzong
    Tour, James M.
    SCIENCE, 2011, 331 (6021) : 1168 - 1172
  • [3] Layer-by-Layer Doping of Few-Layer Graphene Film
    Gunes, Fethullah
    Shin, Hyeon-Jin
    Biswas, Chandan
    Han, Gang Hee
    Kim, Eun Sung
    Chae, Seung Jin
    Choi, Jae-Young
    Lee, Young Hee
    ACS NANO, 2010, 4 (08) : 4595 - 4600
  • [5] Graphene Oxide Layer-by-Layer Films for Sensors and Devices
    Assuncao, Ivan C. C.
    Serio, Susana
    Ferreira, Quirina
    Jones, Nykola C.
    Hoffmann, Soren V.
    Ribeiro, Paulo A.
    Raposo, Maria
    NANOMATERIALS, 2021, 11 (06)
  • [6] In Situ Imaging of Layer-by-Layer Sublimation of Suspended Graphene
    Huang, Jian Yu
    Qi, Liang
    Li, Ju
    NANO RESEARCH, 2010, 3 (01) : 43 - 50
  • [7] Layer-by-Layer Graphene Growth on β-SiC/Si(001)
    Aristov, Victor Yu.
    Chaika, Alexander N.
    Molodtsova, Olga V.
    Babenkov, Sergey V.
    Locatelli, Andrea
    Mentes, Tevfik Onur
    Sala, Alessandro
    Potorochin, Dmitrii
    Marchenko, Dmitry
    Murphy, Barry
    Walls, Brian
    Zhussupbekov, Kuanysh
    Shvets, Igor V.
    ACS NANO, 2019, 13 (01) : 526 - 535
  • [8] In situ imaging of layer-by-layer sublimation of suspended graphene
    Jian Yu Huang
    Liang Qi
    Ju Li
    Nano Research, 2010, 3 : 43 - 50
  • [9] Layer-by-layer assembly of vertically conducting graphene devices
    Jing-Jing Chen
    Jie Meng
    Yang-Bo Zhou
    Han-Chun Wu
    Ya-Qing Bie
    Zhi-Min Liao
    Da-Peng Yu
    Nature Communications, 4
  • [10] Layer-by-Layer Self-Assembly of Graphene Nanoplatelets
    Shen, Jianfeng
    Hu, Yizhe
    Li, Chen
    Qin, Chen
    Shi, Min
    Ye, Mingxin
    LANGMUIR, 2009, 25 (11) : 6122 - 6128