Data augmentation for deep learning based semantic segmentation and crop-weed classification in agricultural robotics

被引:58
|
作者
Su, Daobilige [1 ]
Kong, He [2 ]
Qiao, Yongliang [2 ]
Sukkarieh, Salah [2 ]
机构
[1] China Agr Univ, Coll Engn, Beijing, Peoples R China
[2] Univ Sydney, Australian Ctr Field Robot, Rose St Bldg J04, Sydney, NSW 2006, Australia
关键词
Data augmentation; Deep learning; Semantic segmentation; Agricultural robot; Crop weed classification;
D O I
10.1016/j.compag.2021.106418
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Deep learning methods such as convolutional neural networks (CNN) have become popular for addressing crops and weeds classification problems in agricultural robotics. However, to have satisfactory performance and avoid overfitting, training deep neural nets typically requires thousands of labeled images. This leads to tedious pixelwise labeling for semantic segmentation. In this paper, we hinge on the recent development in data augmentation and utilize the concept further for semantic segmentation and classification of crops and weeds. To be specific, we propose a novel data augmentation framework, based on the random image cropping and patching (RICAP) method, which is originally designed to augment data for generic image classification. The proposed framework introduces novel enhancements to the original RICAP so that it can be effectively used for data augmentation of semantic segmentation tasks. We evaluate the proposed methodology on two datasets from different farms. Comprehensive experimental evaluations and ablation studies show that the proposed framework can effectively improve segmentation accuracies, and the enhancements made over the original RICAP actually contribute to the performance gain. On average, the proposed method increases the mean accuracy and mean intersection over union (IOU) of the deep neural net with the conventional data augmentation (random flipping, rotation and colour jitter) from 91.01 to 94.02 and from 63.59 to 70.77 respectively for Narrabri dataset, and from 97.99 to 98.51 and from 74.26 to 77.09 respectively for Bonn dataset. The limitation of the proposed method, especially when a large number of training data is available, has also been discussed.
引用
下载
收藏
页数:12
相关论文
共 50 条
  • [41] Deep learning-based YOLO for semantic segmentation and classification of weld pool thermal images
    Vinicius Lemes Jorge
    Issam Bendaoud
    Fabien Soulié
    Cyril Bordreuil
    The International Journal of Advanced Manufacturing Technology, 2025, 137 (7) : 3573 - 3585
  • [42] A survey on deep learning-based fine-grained object classification and semantic segmentation
    Zhao B.
    Feng J.
    Wu X.
    Yan S.
    International Journal of Automation and Computing, 2017, 14 (2) : 119 - 135
  • [43] Semantic Data Augmentation for Deep Learning Testing using Generative AI
    Missaoui, Sondess
    Gerasimou, Simos
    Matragkas, Nicholas
    2023 38TH IEEE/ACM INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING, ASE, 2023, : 1694 - 1698
  • [44] A Domain Adaptive Semantic Segmentation Method Using Contrastive Learning and Data Augmentation
    Xiang, Yixiao
    Tian, Lihua
    Li, Chen
    NEURAL PROCESSING LETTERS, 2024, 56 (02)
  • [45] A Domain Adaptive Semantic Segmentation Method Using Contrastive Learning and Data Augmentation
    Yixiao Xiang
    Lihua Tian
    Chen Li
    Neural Processing Letters, 56
  • [46] Brain tumors classification with deep learning using data augmentation
    Gurkahraman, Kali
    Karakis, Rukiye
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2021, 36 (02): : 997 - 1011
  • [47] A Preliminary Study on Data Augmentation of Deep Learning for Image Classification
    Lei, Cheng
    Hu, Benlin
    Wang, Dong
    Zhang, Shu
    Chen, Zhenyu
    11TH ASIA-PACIFIC SYMPOSIUM ON INTERNETWARE (INTERNETWARE 2019), 2019,
  • [48] Data Augmentation for Time Series Classification with Deep Learning Models
    Pialla, Gautier
    Devanne, Maxime
    Weber, Jonathan
    Idoumghar, Lhassane
    Forestier, Germain
    ADVANCED ANALYTICS AND LEARNING ON TEMPORAL DATA, AALTD 2022, 2023, 13812 : 117 - 132
  • [49] GAN-based data augmentation for semantic segmentation in multiple weathers
    Nakashima K.
    Satoh Y.
    Kataoka H.
    Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering, 2021, 87 (01): : 107 - 113
  • [50] A deep learning image segmentation model for agricultural irrigation system classification
    Raei, Ehsan
    Asanjan, Ata Akbari
    Nikoo, Mohammad Reza
    Sadegh, Mojtaba
    Pourshahabi, Shokoufeh
    Adamowski, Jan Franklin
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 198